高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同态加密和群签名的可验证联邦学习方案

李亚红 李一婧 杨小东 张源 牛淑芬

李亚红, 李一婧, 杨小东, 张源, 牛淑芬. 基于同态加密和群签名的可验证联邦学习方案[J]. 电子与信息学报. doi: 10.11999/JEIT240796
引用本文: 李亚红, 李一婧, 杨小东, 张源, 牛淑芬. 基于同态加密和群签名的可验证联邦学习方案[J]. 电子与信息学报. doi: 10.11999/JEIT240796
LI Yahong, LI Yijing, YANG Xiaodong, ZHANG Yuan, NIU Shufen. A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240796
Citation: LI Yahong, LI Yijing, YANG Xiaodong, ZHANG Yuan, NIU Shufen. A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240796

基于同态加密和群签名的可验证联邦学习方案

doi: 10.11999/JEIT240796
基金项目: 国家自然科学基金(62461032),甘肃省科技计划(22JR5RA158,22JR5RA350),甘肃省高校教师创新基金项目(2023A-041,2023-ZD-234),兰州交通大学-天津大学联合创新基金项目(LH2024003)
详细信息
    作者简介:

    李亚红:女,博士,副教授,研究方向为密码学与信息安全

    李一婧:女,硕士生,研究方向为联邦学习与密码学

    杨小东:男,博士,教授,研究方向为应用密码学与信息安全

    张源:男,博士,教授,研究方向为应用密码学与信息安全

    牛淑芬:女,博士,教授,研究方向为云计算和大数据网络的隐私保护

    通讯作者:

    李亚红 liyahong@lzjtu.edu.cn

  • 中图分类号: TN918; TP309.7

A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature

Funds: The National Natural Science Foundation of China (62461032), Gansu Science and Technology Plan (22JR5RA158,22JR5RA350), Gansu Province University Teachers Innovation Fund Project, Lanzhou Jiaotong University-Tianjin University Joint Innovation Fund Project (LH2024003)
  • 摘要: 在车载网络(VANETs)中,联邦学习(FL)通过协同训练机器学习模型,实现了车辆间的数据隐私保护,并提高了整体模型的性能。然而,FL在VANETs中的应用仍面临诸多挑战,如模型泄露风险、训练结果验证困难以及高计算和通信成本等问题。针对这些问题,该文提出一种面向联邦学习的可验证隐私保护批量聚合方案。首先,该方案基于Boneh-Lynn-Shacham (BLS)动态短群聚合签名技术,保护了客户端与路边单元(RSU)交互过程中的数据完整性,确保全局梯度模型更新与共享过程的不可篡改性。当出现异常结果时,方案利用群签名的特性实现车辆的可追溯性。其次,结合改进的Cheon-Kim-Kim-Song (CKKS)线性同态哈希算法,对梯度聚合结果进行验证,确保在联邦学习的聚合过程中保持客户端梯度的机密性,并验证聚合结果的准确性,防止服务器篡改数据导致模型训练无效的问题。此外,该方案还支持车辆在部分掉线的情况下继续更新模型,保障系统的稳定性。实验结果表明,与现有方案相比,该方案在提升数据隐私安全性和结果的可验证性的同时,保证了较高效率。
  • 图  1  系统模型

    图  2  计算开销对比

    图  3  通信开销对比

    图  4  聚合服务器运行时间

    图  5  准确率对比

    表  1  密码学操作执行时间

    符号 描述 运行时间(ms)
    ${T_{{\text{bp}}}}$ 双线性对操作 1.118 1
    ${T_{\text{h}}}$ 映射到$G$的哈希操作 0.019 3
    ${T_{\text{m}}}$ $G$下的乘法操作 0.001 1
    ${T_{\text{a}}}$ $G$下的加法操作 0.000 4
    ${T_{\text{e}}}$ $Z_p^*$下的指数操作 0.065 0
    ${T_{{\text{o - enc}}}}$ 一次性密码本加密 0.394 0
    ${T_{{\text{o - dec}}}}$ 一次性密码本解密 0.442 0
    ${T_{{\text{dn - enc}}}}$ DH密钥交换加密 2.761 1
    ${T_{{\text{dh - dec}}}}$ DH密钥交换解密 0.008 7
    ${T_{{\text{c - enc}}}}$ CKKS加密 2.350 4
    ${T_{{\text{c - dec}}}}$ CKKS解密 0.055 8
    下载: 导出CSV

    表  2  计算开销对比

    方案客户端计算开销(毫秒)聚合服务器计算开销(毫秒)
    文献[12]$n(19{T_{\text{m}}} + 13{T_a} + {T_{\text{h}}} + 2{T_{{\text{bp}}}} + {T_{\text{e}}} + {T_{{\text{o - enc}}}})$$(9n + 8){T_{\text{m}}} + (5n + 2){T_{{\text{bp}}}} + (9n + 6){T_{\text{a}}} + {T_{\text{h}}} + 2{T_{\text{e}}} + {T_{{\text{o - dec}}}}$
    文献[13]$n{T_{{\text{o - enc}}}} + n(19{T_{\text{m}}} + 13{T_{\text{a}}} + {T_{\text{h}}} + 2{T_{{\text{bp}}}} + {T_{\text{e}}})$$24n{T_{\text{m}}} + (4n + 2){T_{{\text{bp}}}} + 11n{T_{\text{e}}} + 26n{T_{\text{a}}} + (n + 1){T_{\text{h}}}$
    所提方案$n({T_{{\text{c - enc}}}} + {T_{\text{m}}} + {T_{\text{h}}})$$(7n - 1){T_{\text{m}}} + (3n + 1){T_{{\text{bp}}}} + 10n{T_{\text{a}}} + (3n + 2){T_{\text{h}}} + n{T_{{\text{c - dec}}}}$
    下载: 导出CSV

    表  3  通信开销对比

    方案客户端与聚合服务器间通信聚合服务器间通信
    文献[12]$7|G| + 3|Z_p^*| + |T|$$7|G| + 2|Z_p^*| + |{\text{ID}}| + |T|$
    文献[13]$7|G| + 2|Z_p^*| + |T|$$6|G| + 2|Z_p^*| + |T|$
    所提方案$7|G| + |Z_p^*|$$7|G| + |Z_p^*| + |T|$
    下载: 导出CSV

    表  4  隐私保护强度数据表

    操作次数$k$累积噪声$N(k)$隐私保护强度$S$
    10$1.1 \times {10^{ - 5}}$0.998 9
    50$5.1 \times {10^{ - 5}}$0.994 9
    100$1.01 \times {10^{ - 4}}$0.989 9
    500$5.001 \times {10^{ - 4}}$0.949 9
    下载: 导出CSV
  • [1] WEN Jie, ZHANG Zhixia, LAN Yang, et al. A survey on federated learning: challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513–535. doi: 10.1007/s13042-022-01647-y.
    [2] LI Li, FAN Yuxi, TSE M, et al. A review of applications in federated learning[J]. Computers & Industrial Engineering, 2020, 149: 106854. doi: 10.1117/12.2675351.
    [3] 魏立斐, 张无忌, 张蕾, 等. 基于本地差分隐私的异步横向联邦安全梯度聚合方案[J]. 电子与信息学报, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.

    WEI Lifei, ZHANG Wuji, ZHANG Lei, et al. A Secure Gradient Aggregation Scheme Based on Local Differential Privacy in Asynchronous Horizontal Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
    [4] QU Zhiguo, TANG Yang, MUHAMMAD G, et al. Privacy protection in intelligent vehicle networking: A novel federated learning algorithm based on information fusion[J]. Information Fusion, 2023, 98: 101824. doi: 10.1016/j.inffus.2023.101824.
    [5] LI Zhang, XU Jianbo, VIJAYAKUMAR P, et al. Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system[J]. IEEE Transactions on Network Science and Engineering, 2022, 10(5): 2864–2880. doi: 10.1109/TNSE.2022.3185327.
    [6] TAMILARASI G, GANDHI K R, and PALANISAMY V. Improved Homomorphic Encryption with Optimal Key Generation Technique for VANETs[J]. Intelligent Automation & Soft Computing, 2022, 33(2). doi: 10.32604/iasc.2022.024687.
    [7] WIBAWA F, CATAK F O, KUZLU M, et al. Homomorphic encryption and federated learning based privacy-preserving CNN training: Covid-19 detection use-case[C]. Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference. Barcelona, Spain, 2022: 85-90. doi: 10.1145/3528580.3532845.
    [8] ZHANG Jiale, LIU Yue, WU Di, et al. VPFL: A verifiable privacy-preserving federated learning scheme for edge computing systems[J]. Digital Communications and Networks, 2023, 9(4): 981–989. doi: 10.1016/j.dcan.2022.05.010.
    [9] WANG Peng, and LIU Yining. SEMA: Secure and efficient message authentication protocol for VANETs[J]. IEEE systems journal, 2021, 15.(1): 846–855. doi: 10.1109/JSYST.2021.3051435.
    [10] AN Haoyang, HE Debiao, BAO Zijian, et al. An identity-based dynamic group signature scheme for reputation evaluation systems[J]. Journal of Systems Architecture, 2023, 139: 102875. doi:org/ 10.1016/j.sysarc.2023.102875. doi: 10.1016/j.sysarc.2023.102875.
    [11] 张海波, 陈舟, 黄宏武, 等. VANET 系统中基于中国剩余定理的群内相互认证密钥协商协议[J]. 通信学报, 2022, 43(1): 182–193. doi: 10.11959/j.issn.1000-436x.2022002.

    ZHANG Haibo, CHEN Zhou, HUANG Hongwu, et al. Intra-group mutual authentication key agreement protocol based on Chinese remainder theorem in VANET system[J]. Journal on Communications, 2022, 43(1): 182–193. doi: 10.11959/j.issn.1000-436x.2022002.
    [12] XIA Feng, LIU Haiyang, YANG Haowei, et al. Batch-Aggregate: Efficient Aggregation for Private Federated Learning in VANETs[J]. IEEE Transactions on Dependable and Secure Computing, 2024.1-15. doi: 10.1109/TDSC.2024.3364371.
    [13] XIA Feng, WANG Xiaofeng, LIU Haiyang, et al. A Privacy-preserving Aggregation Scheme with Continuous Authentication for Federated Learning in VANETs[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9465–9477. doi: 10.1109/TVT.2024.3369942.
    [14] WANG Ruyan, YUAN Xingmin, YANG Zhigang, et al. RFLPV: A robust federated learning scheme with privacy preservation and verifiable aggregation in IoMT[J]. Information Fusion, 2024, 102: 102029. doi: 10.1016/j.inffus.2023.102029.
    [15] CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23. Springer International Publishing, 2017. doi: 10.1007/978-3-319-70694-8_15.
    [16] LEE Y, LEE J W, and KIM Y S. Near-Optimal Polynomial for Modulus Reduction Using L2-Norm for Approximate Homomorphic Encryption[J]. IEEE Access, vol. 8, pp. 144321-144330, 2020. doi: 10.1109/ACCESS.2020.3014369.
    [17] 王勇. 联邦学习模型安全聚合关键技术研究[D]. [博士论文]. 安徽师范大学, 2024. doi: 10.26920/d.cnki.gansu.2024.000005.

    WANG Yong, Research on key technologies of secure model aggregation for federated learning, Ph. D. dissertation, Anhui Normal University, 2024. doi: 10.26920/d.cnki.gansu.2024.000005.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2025-02-17
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回