高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
一种基于三维可变换CNN加速结构的并行度优化搜索算法
屈心媛, 徐宇, 黄志洪, 蔡刚, 方震
2022, 44(4): 1503-1512. doi: 10.11999/JEIT210059  刊出日期:2022-04-18
关键词: 现场可编程门阵列, 卷积神经网络, 硬件加速
现场可编程门阵列(FPGA)被广泛应用于卷积神经网络(CNN)的硬件加速中。为优化加速器性能,Qu等人(2021)提出了一种3维可变换的CNN加速结构,但该结构使得并行度探索空间爆炸增长,搜索最优并行度的时间开销激增,严重降低了加速器实现的可行性。为此该文提出一种细粒度迭代优化的并行度搜索算法,该算法通过多轮迭代的数据筛选,高效地排除冗余的并行度方案,压缩了超过99%的搜索空间。同时算法采用剪枝操作删减无效的计算分支,成功地将计算所需时长从106 h量级减少到10 s内。该算法可适用于不同规格型号的FPGA芯片,其搜索得到的最优并行度方案性能突出,可在不同芯片上实现平均(R1, R2)达(0.957, 0.962)的卓越计算资源利用率。