2017, 39(3): 743-748.
doi: 10.11999/JEIT160300
刊出日期:2017-03-19
微支付交易具有交易量极大且单次交易额极小的特点,使得复杂的认证协议不适用于微支付。Micali等人(2002)提出的基于概率选择微支付方案,把微支付聚合成宏支付,大幅提高了微支付的效率。Liu-Yan在(2013)提出了保证所有参与者的数据融入概率选择结果的生成, 而且使得所有参与者可以验证结果的公平性。然而,Liu-Yan方案中银行可能获得额外利益,从而破坏了协议的公平性。该文首先分析了Liu-Yan方案的安全威胁,并且以1个用户-1个商家的模型代替Liu-Yan方案中大量用户-1个商家的模型,以数据承诺技术为基础保障结果的公平性与可验证性。
2022, 44(10): 3343-3352.
doi: 10.11999/JEIT220380
刊出日期:2022-10-19
基于深度卷积神经网络的图像超分辨率重建算法通常假设低分辨率图像的降质是固定且已知的,如双3次下采样等,因此难以处理降质(如模糊核及噪声水平)未知的图像。针对此问题,该文提出联合估计模糊核、噪声水平和高分辨率图像,设计了一种基于迭代交替优化的图像盲超分辨率重建网络。在所提网络中,图像重建器以估计的模糊核和噪声水平作为先验信息,由低分辨率图像重建出高分辨率图像;同时,综合低分辨率图像和估计的高分辨率图像,模糊核及噪声水平估计器分别实现模糊核和噪声水平的估计。进一步地,该文提出对模糊核/噪声水平估计器及图像重建器进行迭代交替的端对端优化,以提高它们的兼容性并使其相互促进。实验结果表明,与IKC, DASR, MANet, DAN等现有算法相比,提出方法在常用公开测试集(Set5, Set14, B100, Urban100)及真实场景图像上都取得了更优的性能,能够更好地对降质未知的图像进行重建;同时,提出方法在参数量或处理效率上也有一定的优势。