高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代交替优化的图像盲超分辨率重建

陈洪刚 李自强 张永飞 王正勇 卿粼波 何小海

陈洪刚, 李自强, 张永飞, 王正勇, 卿粼波, 何小海. 基于迭代交替优化的图像盲超分辨率重建[J]. 电子与信息学报, 2022, 44(10): 3343-3352. doi: 10.11999/JEIT220380
引用本文: 陈洪刚, 李自强, 张永飞, 王正勇, 卿粼波, 何小海. 基于迭代交替优化的图像盲超分辨率重建[J]. 电子与信息学报, 2022, 44(10): 3343-3352. doi: 10.11999/JEIT220380
CHEN Honggang, LI Ziqiang, ZHANG Yongfei, WANG Zhengyong, QING Linbo, HE Xiaohai. Blind Image Super-resolution Reconstruction via Iterative and Alternative Optimization[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3343-3352. doi: 10.11999/JEIT220380
Citation: CHEN Honggang, LI Ziqiang, ZHANG Yongfei, WANG Zhengyong, QING Linbo, HE Xiaohai. Blind Image Super-resolution Reconstruction via Iterative and Alternative Optimization[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3343-3352. doi: 10.11999/JEIT220380

基于迭代交替优化的图像盲超分辨率重建

doi: 10.11999/JEIT220380
基金项目: 国家自然科学基金(62001316, 61871279),四川省自然科学基金(2022NSFSC0922),中央高校基本科研业务费专项资金(2021SCU12061)
详细信息
    作者简介:

    陈洪刚:男,副研究员,研究方向为图像与视频处理

    李自强:男,硕士生,研究方向为图像超分辨率重建

    张永飞:男,硕士生,研究方向为图像超分辨率重建

    王正勇:女,副教授,研究方向为图像与视频处理

    卿粼波:男, 教授,研究方向为图像与视频处理

    何小海:男,教授,研究方向为图像与视频处理

    通讯作者:

    王正勇 wangzheny@scu.edu.cn

  • 中图分类号: TN911.73; TP391

Blind Image Super-resolution Reconstruction via Iterative and Alternative Optimization

Funds: The National Natural Science Foundation of China (62001316, 61871279), The Natural Science Foundation of Sichuan Province (2022NSFSC0922), The Fundamental Research Foundation for the Central Universities (2021SCU12061)
  • 摘要: 基于深度卷积神经网络的图像超分辨率重建算法通常假设低分辨率图像的降质是固定且已知的,如双3次下采样等,因此难以处理降质(如模糊核及噪声水平)未知的图像。针对此问题,该文提出联合估计模糊核、噪声水平和高分辨率图像,设计了一种基于迭代交替优化的图像盲超分辨率重建网络。在所提网络中,图像重建器以估计的模糊核和噪声水平作为先验信息,由低分辨率图像重建出高分辨率图像;同时,综合低分辨率图像和估计的高分辨率图像,模糊核及噪声水平估计器分别实现模糊核和噪声水平的估计。进一步地,该文提出对模糊核/噪声水平估计器及图像重建器进行迭代交替的端对端优化,以提高它们的兼容性并使其相互促进。实验结果表明,与IKC, DASR, MANet, DAN等现有算法相比,提出方法在常用公开测试集(Set5, Set14, B100, Urban100)及真实场景图像上都取得了更优的性能,能够更好地对降质未知的图像进行重建;同时,提出方法在参数量或处理效率上也有一定的优势。
  • 图  1  提出算法的原理框图

    图  2  构建的图像重建器、模糊核估计器及噪声水平估计器的网络结构

    图  3  动态调制层(DML)

    图  4  动态注意力模块(DAB)

    图  5  不同算法对Urban100中“img097”图像的重建结果

    图  6  不同算法对真实场景图像“chip”的重建结果(重建尺度为4)

    图  7  Set5中图像的重建结果、模糊核估计及噪声水平估计随迭代次数的动态变化过程

    图  8  不同迭代次数下对Set5中“baby”图像的重建结果

    图  9  参数量与运行时间

    表  1  2倍重建结果的客观参数PSNR(dB)/SSIM比较

    方法噪声水平Set5[27]Set14[28]B100[29]Urban100[30]
    Bicubic530.07/0.844227.61/0.762027.23/0.726224.61/0.7253
    1028.85/0.770926.85/0.697926.51/0.660124.19/0.6637
    MANet[12]533.60/0.910130.53/0.840729.45/0.805628.31/0.8513
    1032.15/0.887129.42/0.804828.40/0.762927.31/0.8202
    DASR[14]533.35/0.907830.22/0.832529.12/0.794727.66/0.8364
    1031.95/0.885529.21/0.800328.21/0.756326.89/0.8107
    DnCNN[31]+IKC[15]531.69/0.882429.27/0.811828.67/0.782626.79/0.8089
    1030.85/0.865228.53/0.781727.90/0.746326.12/0.7830
    DAN[17]533.83/0.913230.69/0.843029.52/0.808128.62/0.8566
    1032.32/0.890229.53/0.807228.45/0.765027.56/0.8256
    本文算法533.98/0.915330.85/0.849229.66/0.814028.79/0.8609
    1032.39/0.891229.64/0.811028.54/0.768327.68/0.8283
    下载: 导出CSV

    表  2  4倍重建结果的客观参数PSNR(dB)/SSIM比较

    方法噪声水平Set5[27]Set14[28]B100[29]Urban100[30]
    Bicubic525.84/0.716224.29/0.614424.53/0.582521.70/0.5644
    1025.30/0.672823.91/0.576824.12/0.543821.48/0.5286
    MANet[12]529.01/0.824226.59/0.698326.01/0.650724.01/0.6922
    1027.77/0.792825.74/0.667225.37/0.620723.36/0.6605
    DASR[14]528.85/0.821426.46/0.696625.94/0.649423.72/0.6880
    1027.73/0.792125.69/0.667625.32/0.620723.16/0.6605
    DnCNN[31]+IKC[15]527.26/0.761925.51/0.660425.38/0.621822.92/0.6332
    1026.65/0.749325.03/0.639024.96/0.600822.53/0.6140
    DAN[17]529.01/0.823826.62/0.698026.02/0.650724.02/0.6903
    1027.84/0.794725.85/0.669825.39/0.622323.44/0.6630
    本文算法529.32/0.830026.82/0.706026.16/0.658424.29/0.7036
    1028.05/0.799925.98/0.673825.48/0.626023.61/0.6712
    下载: 导出CSV
  • [1] 蔡文郁, 张美燕, 吴岩, 等. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046

    CAI Wenyu, ZHANG Meiyan, WU Yan, et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046
    [2] ZHANG Xiangjun and WU Xiaolin. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008, 17(6): 887–896. doi: 10.1109/TIP.2008.924279
    [3] ZHANG Kaibing, GAO Xinbo, TAO Dacheng, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544–4556. doi: 10.1109/TIP.2012.2208977
    [4] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199.
    [5] CHEN Hanting, WANG Yunhe, GUO Tianyu, et al. Pre-trained image processing transformer[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12299–12310.
    [6] LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844.
    [7] ZHANG Kai, LIANG Jingyun, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4791–4800.
    [8] WANG Xintao, XIE Liangbin, DONG Chao, et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 1905–1914.
    [9] BELL-KLIGLER S, SHOCHER A, and IRANI M. Blind super-resolution kernel estimation using an internal-GAN[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 284–293.
    [10] LIANG Jingyun, ZHANG Kai, GU Shuhang, et al. Flow-based kernel prior with application to blind super-resolution[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10601–10610.
    [11] TAO Guangpin, JI Xiaozhong, WANG Wenzhuo, et al. Spectrum-to-kernel translation for accurate blind image super-resolution[C/OL]. Advances in Neural Information Processing Systems, 2021: 34.
    [12] LIANG Jingyun, SUN Guolei, ZHANG Kai, et al. Mutual affine network for spatially variant kernel estimation in blind image super-resolution[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4096–4105.
    [13] KIM J, JUNG C, and KIM C. Dual back-projection-based internal learning for blind super-resolution[J]. IEEE Signal Processing Letters, 2020, 27: 1190–1194. doi: 10.1109/LSP.2020.3005043
    [14] WANG Longguang, WANG Yingqian, DONG Xiaoyu, et al. Unsupervised degradation representation learning for blind super-resolution[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10581–10590.
    [15] GU Jinjin, LU Hannan, ZUO Wangmeng, et al. Blind super-resolution with iterative kernel correction[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1604–1613.
    [16] LUO Zhengxiong, HUANG Yan, LI Shang, et al. Unfolding the alternating optimization for blind super resolution[C/OL]. Advances in Neural Information Processing Systems, 2020: 5632–5643.
    [17] LUO Zhengxiong, HUANG Yan, LI Shang, et al. End-to-end alternating optimization for blind super resolution[EB/OL]. https://arxiv.org/abs/2105.06878v1, 2021.
    [18] WANG Zhihao, CHEN Jian, and HOI S C H. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365–3387. doi: 10.1109/TPAMI.2020.2982166
    [19] CHEN Honggang, HE Xiaohai, QING Linbo, et al. Real-world single image super-resolution: A brief review[J]. Information Fusion, 2022, 79: 124–145. doi: 10.1016/j.inffus.2021.09.005
    [20] LIU Anran, LIU Yihao, GU Jinjin, et al. Blind image super-resolution: A survey and beyond[EB/OL]. https://arxiv.org/abs/2107.03055, 2021.
    [21] HUI Zheng, LI Jie, WANG Xiumei, et al. Learning the non-differentiable optimization for blind super-resolution[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2093–2102.
    [22] CHEN Haoyu, GU Jinjin, and ZHANG Zhi. Attention in attention network for image super-resolution[EB/OL]. https://arxiv.org/abs/2104.09497v3, 2021.
    [23] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722.
    [24] AGUSTSSON E and TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: Dataset and study[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 126–135.
    [25] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: Methods and results[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 114–125.
    [26] KINGMA D P and BA J. ADAM: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
    [27] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]. British Machine Vision Conference, Surrey, United Kingdom, 2012.
    [28] ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730.
    [29] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423.
    [30] HUANG J B, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206.
    [31] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  573
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-05-21
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回