高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能超表面辅助的大规模机器类通信深度学习大规模MIMO信道估计

刘婷 王媛 辛元雪

刘婷, 王媛, 辛元雪. 可重构智能超表面辅助的大规模机器类通信深度学习大规模MIMO信道估计[J]. 电子与信息学报, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
引用本文: 刘婷, 王媛, 辛元雪. 可重构智能超表面辅助的大规模机器类通信深度学习大规模MIMO信道估计[J]. 电子与信息学报, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
LIU Ting, WANG Yuan, XIN Yuanxue. Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
Citation: LIU Ting, WANG Yuan, XIN Yuanxue. Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584

可重构智能超表面辅助的大规模机器类通信深度学习大规模MIMO信道估计

doi: 10.11999/JEIT240584
基金项目: 国家自然科学基金 (62101274),江苏省自然科学基金 (BK20210640)
详细信息
    作者简介:

    刘婷:女,讲师,研究方向为超大规模连接无线传输技术

    王媛:女,硕士生,研究方向为无线通信

    辛元雪:女,副教授,研究方向为大规模MIMO频谱效率、能量效率和新型双工技术

    通讯作者:

    刘婷 liuting@nuist.edu.cn

  • 中图分类号: TN929.5

Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication

Funds: The National Natural Science Foundation of China (62101274), The Natural Science Foundation of Jiangsu Province (BK20210640)
  • 摘要: 大规模机器类通信 (mMTC) 是第5代移动通信系统的重要应用场景之一,可实现每平方公里近百万级设备的连接。考虑到mMTC传播环境的复杂性,该文引入可重构智能超表面 (RIS) 进行上行免授权的传输,由此级联形成用户与RIS、RIS与基站 (BS) 之间的信道链路,从而有效控制无线信号传输的质量。在此基础上,建立Turbo译码消息传递思想下的降噪学习系统,通过大量的训练数据,以学习RIS辅助的级联信道状态信息,并对其进行估计。此外,该文对RIS辅助的mMTC信道估计结果进行了统计分析,以验证所提方案的准确性。数值仿真结果和理论分析结果表明,该文方法优于其他压缩感知类的方法。
  • 图  1  RIS辅助的mMTC上行传输系统示意图

    图  2  信道估计深度学习架构图

    图  3  联合GAN和DnCNN的降噪模块图

    图  4  不同系统模型下的信道估计性能比较,$ M = 32 $

    图  5  RIS辅助系统的MSE性能比较,$ M = 64 $

    图  6  不同RIS单元数量下的MSE性能比较,$ M = 64 $

    图  7  不同学习层数下的MSE性能比较

  • [1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [2] IMT-2030 (6G) 推进组. 6G无线系统设计原则和典型特征白皮书[R]. 2023.

    IMT-2030 (6G) Promotion Group. White paper on 6G wireless system design principles and typical characteristics[R]. 2023.
    [3] 尤肖虎, 许威, 相红, 等. 6G发展趋势与候选关键技术分析[J]. 信息通信技术, 2023, 17(6): 11–20,27. doi: 10.3969/j.issn.1674-1285.2023.06.003.

    YOU Xiaohu, XU Wei, XIANG Hong, et al. 6G network evolution and key candidate technologies[J]. Information and Communications Technologies, 2023, 17(6): 11–20,27. doi: 10.3969/j.issn.1674-1285.2023.06.003.
    [4] ELHOUSHY S, IBRAHIM M, and HAMOUDA W. Cell-free massive MIMO: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 492–523. doi: 10.1109/COMST.2021.3123267.
    [5] LIU Ting, JIN Shi, WEN Chaokai, et al. Generalized channel estimation and user detection for massive connectivity with mixed-ADC massive MIMO[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3236–3250. doi: 10.1109/TWC.2019.2912370.
    [6] 朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [7] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [8] PAN Cunhua, ZHOU Gui, ZHI Kangda, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883–917. doi: 10.1109/JSTSP.2022.3195671.
    [9] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055.
    [10] NGUYEN N T, NGUYEN V D, NGUYEN H V, et al. Spectral efficiency analysis of hybrid relay-reflecting intelligent surface-assisted cell-free massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3397–3416. doi: 10.1109/TWC.2022.3217828.
    [11] HE Jinglian, YU Kaiqiang, SHI Yuanming, et al. Reconfigurable intelligent surface assisted massive MIMO with antenna selection[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4769–4783. doi: 10.1109/TWC.2021.3133272.
    [12] BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [13] LIESEGANG S, ZAPPONE A, MUÑOZ O, et al. Rate optimization for RIS-aided mMTC networks in the finite blocklength regime[J]. IEEE Communications Letters, 2023, 27(3): 921–925. doi: 10.1109/LCOMM.2022.3231717.
    [14] CHEN Zhen, HUANG Lei, XIA Shuqiang, et al. Parallel channel estimation for RIS-assisted internet of things[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9762–9773. doi: 10.1109/TITS.2024.3364248.
    [15] CHEN Jianqiao, MA Nan, XU Xiaodong, et al. Efficient two-level block-structured sparse Bayesian learning-based channel estimation for RIS-assisted MIMO IoT systems[J]. IEEE Internet of Things Journal, 2024, 11(14): 24933–24947. doi: 10.1109/JIOT.2024.3387885.
    [16] HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al. Reconfigurable intelligent surface aided NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2575–2588. doi: 10.1109/JSAC.2020.3007039.
    [17] SAGIR B, AYDIN E, and ILHAN H. Deep-learning-assisted IoT-based RIS for cooperative communications[J]. IEEE Internet of Things Journal, 2023, 10(12): 10471–10483. doi: 10.1109/JIOT.2023.3239818.
    [18] NGUYEN C, HOANG T M, and CHEEMA A A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1: 43–60. doi: 10.1109/TMLCN.2023.3278232.
    [19] BAI Yanna, CHEN Wei, AI Bo, et al. Prior information aided deep learning method for grant-free NOMA in mMTC[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 112–126. doi: 10.1109/JSAC.2021.3126071.
  • 加载中
图(7)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  53
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-09-14
  • 网络出版日期:  2024-09-24
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回