高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非授权频段下无人机辅助通信的轨迹与资源分配优化

潘钰 胡航 金虎 雷迎科 冯辉 姜丽 张孟伯

潘钰, 胡航, 金虎, 雷迎科, 冯辉, 姜丽, 张孟伯. 非授权频段下无人机辅助通信的轨迹与资源分配优化[J]. 电子与信息学报, 2024, 46(11): 4287-4294. doi: 10.11999/JEIT240275
引用本文: 潘钰, 胡航, 金虎, 雷迎科, 冯辉, 姜丽, 张孟伯. 非授权频段下无人机辅助通信的轨迹与资源分配优化[J]. 电子与信息学报, 2024, 46(11): 4287-4294. doi: 10.11999/JEIT240275
PAN Yu, HU Hang, JIN Hu, LEI Yingke, FENG Hui, JIANG Li, ZHANG Mengbo. Trajectory and Resource Allocation Optimization for Unmanned Aerial Vehicles Assisted Communications in Unlicensed Bands[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4287-4294. doi: 10.11999/JEIT240275
Citation: PAN Yu, HU Hang, JIN Hu, LEI Yingke, FENG Hui, JIANG Li, ZHANG Mengbo. Trajectory and Resource Allocation Optimization for Unmanned Aerial Vehicles Assisted Communications in Unlicensed Bands[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4287-4294. doi: 10.11999/JEIT240275

非授权频段下无人机辅助通信的轨迹与资源分配优化

doi: 10.11999/JEIT240275
基金项目: 陕西省自然科学基础研究计划(2024JC-YBMS-514)
详细信息
    作者简介:

    潘钰:女,讲师,研究方向为无人机通信

    胡航:男,副教授,研究方向为无线移动通信

    金虎:男,教授,研究方向为无线移动通信

    雷迎科:男,教授,研究方向为无线移动通信

    冯辉:男,讲师,研究方向为无线移动通信

    姜丽:女,副教授,研究方向为通信抗干扰

    张孟伯:男,讲师,研究方向为通信抗干扰

    通讯作者:

    姜丽 jiangli17@nudt.edu.cn

  • 中图分类号: TN915

Trajectory and Resource Allocation Optimization for Unmanned Aerial Vehicles Assisted Communications in Unlicensed Bands

Funds: Shaanxi Province Natural Science Basic Research Program (2024JC-YBMS-514)
  • 摘要: 为解决无人机(UAV)在非授权频段下频谱资源受限的瓶颈问题,针对城市环境中UAV辅助监测的通信网络,该文提出一种下垫式(Underlay)接入机制下的高谱效联合优化方案。基于UAV的高机动性将空地信道建模为概率性视距(LoS)信道,考虑同信道干扰和UAV最大速度约束建立联合功率分配-轨迹规划的混合资源优化模型,在主用户占用频谱情况下使UAV在给定任务时间内实现监测数据的快速传输。原始问题为NP-hard的混合整数非凸问题,首先将其解耦为双层规划问题,采用松弛变量和逐次凸逼近(SCA)技术将轨迹问题转换为凸规划问题后实现有效求解。仿真验证了所提联合优化方案相比改进粒子群优化(PSO)方案能够提升最高约19%的频谱效率,且对于维度较高的轨迹规划问题,所提基于SCA的算法具有更低的算法复杂度和更快的收敛性。
  • 图  1  城市环境下基于Underlay机制的UAV通信网络模型

    图  2  不同主网络位置下UAV的最优轨迹

    图  3  ${T_{{\text{tot}}}} = 55$ s时的最佳UAV-WD接入策略和发射功率

    图  4  改进的PSO算法下的UAV最优轨迹

    图  5  两种算法的收敛性对比

    图  6  任务时长变化时不同方案的性能对比

  • [1] 林志, 林敏, 黄清泉, 等. 能效最大化准则下的星地融合网络的安全波束成形算法[J]. 电子学报, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.

    LIN Zhi, LIN Min, HUANG Qingquan, et al. Secure beamforming algorithm in satellite-terrestrial integrated networks with energy efficiency maximization criterion[J]. Acta Electronica Sinica, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.
    [2] 张广驰, 顾泽霖, 崔苗. 空地协同通信感知一体化系统的轨迹与资源分配联合优化[J]. 电子与信息学报, 2024, 46(6): 2382–2390. doi: 10.11999/JEIT230716.

    ZHANG Guangchi, GU Zelin, and CUI Miao. Joint Trajectory and resource allocation optimization for air-ground collaborative integrated sensing and communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2382–2390. doi: 10.11999/JEIT230716.
    [3] 徐勇军, 李国权, 陈前斌, 等. 基于非正交多址接入异构携能网络稳健能效资源分配算法[J]. 通信学报, 2020, 41(2): 84–96. doi: 10.11959/j.issn.1000-436x.2020029.

    XU Yongjun, LI Guoquan, CHEN Qianbin, et al. Robust energy efficiency for SWIPT-enabled heterogeneous NOMA network[J]. Journal on Communications, 2020, 41(2): 84–96. doi: 10.11959/j.issn.1000-436x.2020029.
    [4] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.
    [5] GOLDSMITH A, JAFAR S A, MARIC I, et al. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective[J]. Proceedings of the IEEE, 2009, 97(5): 894–914. doi: 10.1109/JPROC.2009.2015717.
    [6] 韩蕙竹, 黄仰超, 胡航, 等. 无人机短包通信中基于NOMA传输的安全性能分析[J]. 信号处理, 2022, 38(12): 2582–2593. doi: 10.16798/j.issn.1003-0530.2022.12.013.

    HAN Huizhu, HUANG Yangchao, HU Hang, et al. Security performance analysis based on NOMA transmission in UAV short packet communication[J]. Journal of Signal Processing, 2022, 38(12): 2582–2593. doi: 10.16798/j.issn.1003-0530.2022.12.013.
    [7] XU Xiaoren, XU Yihan, ZHOU Wen, et al. Energy efficient resource allocation for UAV-served energy harvesting-supported cognitive industrial M2M networks[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1454–1458. doi: 10.1109/LWC.2023.3278627.
    [8] QI Weijing, SONG Qingyang, GUO Lei, et al. Energy-efficient resource allocation for UAV-assisted vehicular networks with spectrum sharing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7691–7702. doi: 10.1109/TVT.2022.3163430.
    [9] XIAO He, WU Chun, JIANG Hong, et al. Energy-efficient resource allocation in multiple UAVs-assisted energy harvesting-powered two-hop cognitive radio network[J]. IEEE Sensors Journal, 2023, 23(7): 7644–7655. doi: 10.1109/JSEN.2023.3247436.
    [10] 刘伯阳, 杨宁乐, 马杰, 等. 无人机认知边缘计算资源分配与轨迹优化方案[J]. 西安邮电大学学报, 2021, 26(1): 20–27. doi: 10.13682/j.issn.2095-6533.2021.01.004.

    LIU Boyang, YANG Ningle, MA Jie, et al. Resource allocation and trajectory optimization scheme for UAV-enabled cognitive edge computing networks[J]. Journal of Xi’an University of Posts and Telecommunications, 2021, 26(1): 20–27. doi: 10.13682/j.issn.2095-6533.2021.01.004.
    [11] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [12] AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736.
    [13] YOU Changsheng and ZHANG Rui. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753–3768. doi: 10.1109/TWC.2020.2978073.
    [14] XU Jie, ZENG Yong, and ZHANG Rui. UAV-Enabled wireless power transfer: Trajectory design and energy optimization[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5092–5106. doi: 10.1109/TWC.2018.2838134.
    [15] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for Multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293.
  • 加载中
图(6)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  84
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-08-30
  • 网络出版日期:  2024-09-09
  • 刊出日期:  2024-11-10

目录

    /

    返回文章
    返回