高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向遥感图像解译的增量深度学习

翁星星 庞超 许博文 夏桂松

翁星星, 庞超, 许博文, 夏桂松. 面向遥感图像解译的增量深度学习[J]. 电子与信息学报. doi: 10.11999/JEIT240172
引用本文: 翁星星, 庞超, 许博文, 夏桂松. 面向遥感图像解译的增量深度学习[J]. 电子与信息学报. doi: 10.11999/JEIT240172
WENG Xingxing, PANG Chao, XU Bowen, XIA Guisong. Incremental Deep Learning for Remote Sensing Image Interpretation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240172
Citation: WENG Xingxing, PANG Chao, XU Bowen, XIA Guisong. Incremental Deep Learning for Remote Sensing Image Interpretation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240172

面向遥感图像解译的增量深度学习

doi: 10.11999/JEIT240172
基金项目: 国家自然科学基金(U22B2011, 62325111)
详细信息
    作者简介:

    翁星星:女,博士生,研究方向为遥感图像智能解译的增量学习

    庞超:超:男,博士生,研究方向为遥感图像变化检测、计算机视觉

    许博文:女,博士生,研究方向为遥感图像智能解译、计算机视觉

    夏桂松:男,博士,教授,研究方向为计算机视觉、遥感图像解译

    通讯作者:

    夏桂松 guisong.xia@whu.edu.cn

  • 中图分类号: TN911.73; TP751

Incremental Deep Learning for Remote Sensing Image Interpretation

Funds: National Natural Science Foundation of China (U22B2011, 62325111)
  • 摘要: 深度学习的发展推动了高精度遥感图像智能解译模型的涌现。然而,目前遥感智能解译模型大多基于预先定义的静态数据集独立训练,难以适应环境开放和需求动态的实际应用,严重阻碍了遥感智能解译模型的广域和长期运用。增量学习能使模型持续学习新知识,并保持对旧知识的记忆,近年来,被广泛应用于推动遥感智能解译模型演化、提升模型智能解译性能。该文面向多模态遥感数据、不同类型解译任务,全面调研了遥感图像智能解译增量学习方法,从遗忘问题解决思路、解译模型进化应用两个层面梳理了现有研究工作。在此基础上,从促进遥感图像解译模型进化研究的角度,展望和讨论了遥感领域增量学习的未来研究方向。
  • 图  1  不同类型的遥感图像场景识别模型进化[23]

    图  2  不同形式的网络局部模块扩展

    图  3  常用的代表性样本选择方法结果示意图

    图  4  基于提示的增量学习[65]

    图  5  天空地多源可见光图像[88]

    表  1  面向遥感图像解译的增量学习方法对比与总结

    方法 核心思想 优点 缺点 代表性成果
    知识蒸馏 新旧模型在同一输入图像上的输出保持一致 以损失函数的形式约束模型的参数更新,简单有效且易于实施 旧模型保存,占用一定的存储空间 逐任务知识蒸馏[24]
    背景建模知识蒸馏[25]
    空间-通道压缩特征蒸馏[26]
    结构化知识蒸馏[27,28]
    历史信息引导特征蒸馏[29]
    网络扩展 增加独立网络参数学习新知识 直接冻结已有网络即可有效保持旧知识 不断扩大的网络规模增加计算和存储成本 增量学习建模为提升过程[30,31]
    特征编码器深层结构扩展[32]
    残差模块扩展[33,34]
    特征迁移模块扩展[35]
    记忆回放 保留少部分旧数据,帮助模型回忆旧知识 模型基于新旧数据优化,能够较好地感知新旧知识的边界 旧数据保留增加存储成本,且易产生过拟合 代表性样本选择[36,38]
    预测偏差校正[3946]
    旧数据特征生成[24,47]
    下载: 导出CSV

    表  2  面向可见光图像解译的类别增量学习方法总结

    解译任务 研究工作 贡献 遗忘问题解决思路
    知识蒸馏 网络扩展 记忆回放
    场景识别 [31] 类别增量学习建模为特征提升过程,动态扩展模块化分类网络 $ \surd $ $ \surd $ $ \surd $
    [38] 动态混合的样本选择策略和基于异构原型的学习框架,增加存储样本的信息量 $ \surd $ $ \times $ $ \surd $
    [64] 利用可学习提示解耦场景识别的知识,避免特定知识的相互干扰缓解遗忘问题 $ \times $ $ \surd $ $ \times $
    [66] 相互协作的瞬时网络和保持网络实现有效的旧知识召回和新知识积累 $ \surd $ $ \times $ $ \times $
    [37] 凸包构造算法选取接近类边界的样本 $ \times $ $ \times $ $ \surd $
    [53] 根据新旧类别的相似性设计类别学习顺序,提高新模型的新类别学习效率 $ \surd $ $ \times $ $ \surd $
    [47] 利用VAE生成多样的旧类别特征,避免过拟合和存储成本高的问题 $ \times $ $ \times $ $ \surd $
    [40] 平衡的旧数据集微调新模型的预测头,缓解新旧类别不平衡导致的预测偏差 $ \surd $ $ \times $ $ \surd $
    [63] 扩展预测头学习新类别,并依据图像特征与任务原型的相似性选择预测头 $ \surd $ $ \surd $ $ \times $
    目标检测 [45] 基于熵的蓄水池抽样策略和样本抽样加权缓解回放不平衡导致的预测偏差 $ \times $ $ \times $ $ \surd $
    [49] 在区域候选网络和预测头添加分支并迁移知识,实现新类别学习和旧知识保留 $ \surd $ $ \surd $ $ \times $
    地物分类 [28] 跨图像特征相关性蒸馏损失增强模型的新类别学习能力 $ \surd $ $ \times $ $ \times $
    [24] 像素级旧特征生成,应对遗忘问题;逐任务知识蒸馏避免新类别向旧类别压缩 $ \surd $ $ \times $ $ \surd $
    [26] 空间-通道维度的特征压缩并迁移,降低特征空间知识蒸馏的计算成本;信息熵量化旧模型预测的准确性,并仅使用高置信度像素预测维持旧知识 $ \surd $ $ \times $ $ \times $
    [29] 历史信息引导模型关注前景(旧类别)区域的知识迁移;高置信度的旧模型预测与真实标签相结合,为新模型提供完整的类别监督信息 $ \surd $ $ \times $ $ \times $
    [69] 多样蒸馏损失促使模型关注易被遗忘的小目标和目标边缘 $ \surd $ $ \times $ $ \times $
    [67] 依据类别实例数量计算每张图像的重要性,确保存储图像的类别均衡 $ \surd $ $ \times $ $ \surd $
    下载: 导出CSV

    表  3  面向可见光遥感图像解译的类别增量学习常用数据集

    解译任务数据集图像数量类别数量类别增量学习方法
    场景识别NWPU-RESISC45[77]3150045[37,53,64]
    FGSCR-42[78]932042[38]
    PatternNet[79]3040038[53]
    RSICB-256[80]2800035[31,66]
    Optimal-31[81]186031[47,63]
    AID[75]1000030[31,64,66]
    CLRS[74]1500025[40]
    UC-Merced[70]210021[31,47,63,64,66]
    SIRI-WHU[82]240012[37]
    目标检测DIOR[71]2346320[45,49]
    DOTA[83]280615[45,49]
    NWPU VHR-10[84]80010[45]
    地物分类iSAID[76]280615[24,28,29]
    GCSS[85]9488[29]
    Deepglobe[86]11467[24,26]
    Potsdam[72]/Vaihingen[73]38/336[24,26,28,67,69]
    Luxcarta[67]-5[67,68]
    下载: 导出CSV

    表  4  面向可见光图像解译的类别增量学习方法性能对比

    解译任务研究工作评价指标数据集增量训练次数得分(%)发布时间
    场景识别[31]mACCRSICB-256991.10TGRS’2024
    AID686.75
    UC-Merced394.29
    [38]ACCFGSCR-42889.06TAES’2024
    [64]ACCNWPU-RESISC45972.90GRSL’2023
    AID681.10
    UC-Merced392.33
    [66]mACCRSICB-256982.63TGRS’2022
    AID688.93
    UC-Merced389.52
    [37]ACCNWPU-RESISC45793.47TGRS’2022
    SIRI-WHU798.13
    [53]mACCNWPU-RESISC45949.42JSTARS’2021
    PatternNet662.31
    [47]ACCOptimal-311086.80GRSL’2021
    UC-Merced794.20
    [40]ACCCLRS432.30CIOP’2021
    [63]ACCOptimal-311071.00GRSL’2020
    UC-Merced789.00
    目标检测[45]mAPDIOR2034.40EAAI’2023
    DOTA1554.90
    NWPU VHR-101073.60
    [49]mAPDIOR268.45TGRS’2022
    DOTA265.20
    地物分类[28]mIoUiSAID631.88TGRS’2023
    Potsdam574.44
    Vaihingen562.54
    [24]mIoUiSAID631.71TGRS’2022
    Deepglobe657.00
    Potsdam277.70
    Vaihingen374.60
    [26]mIoUDeepglobe652.40TGRS’2022
    Potsdam376.30
    Vaihingen374.10
    [29]mIoUiSAID630.21TGRS’2022
    GCSS562.53
    [69]mIoUPotsdam275.92TGRS’2021
    Vaihingen373.96
    [67]F1Luxcarta368.09JSTARS’2019
    Potsdam384.25
    Vaihingen387.44
    下载: 导出CSV

    表  5  面向可见光图像解译的域增量学习方法总结

    解译任务研究工作贡献遗忘问题解决思路
    知识蒸馏网络扩展记忆回放
    场景识别[87]双网络知识协同学习策略增强场景识别模型的新知识学习和旧知识巩固能力$ \surd $$ \times $$ \times $
    目标检测[88]为特征空间、输出空间的知识蒸馏添加可学习权重,解决预测偏差问题$ \surd $$ \times $$ \surd $
    地物分类[30]域增量学习建模为提升过程,并利用自适应学习率确定每个网络的重要性$ \times $$ \surd $$ \times $
    [50]扩展整个网络,新网络的学习目标是弥补已有模型在新数据上的性能不足$ \times $$ \surd $$ \times $
    变化检测[34]输出空间和多层次特征空间的知识蒸馏保留旧知识;扩展域残差单位和解码器,学习新知识$ \surd $$ \surd $$ \times $
    下载: 导出CSV

    表  6  面向可见光图像解译的域增量学习方法性能对比

    解译任务研究工作评价指标数据集增量训练次数得分(%)发布时间
    场景识别[87]ACCNWPU-RESISC45[77]580.53计算机应用’2023
    AID[75]577.40
    目标检测[88]mAP@0.5FASDD_CD[89]$ \to $FASDD_RS[89]249.47JAG’2023
    FASDD_RS[89]$ \to $FLAME[90]251.53
    地物分类[30]OADREAM-B$ ‡ $[30]$ \to $xBD[91]$ \to $Haiti-xBD[30]397.94
    (仅新域)
    ISPRS’2023
    [50]IoUDREAM-B[50]463.72Remote Sens.’2020
    变化检测[34]$ {\Delta }_{\mathrm{I}\mathrm{o}\mathrm{U}} $SYSU-CD[92]$ \to $CDD[93]$ \to $PRCV[34]38.22TGRS’2024
    $ \to $:指示模型增量学习顺序
    下载: 导出CSV

    表  7  面向可见光图像解译的任务增量学习方法总结

    解译任务研究工作贡献遗忘问题解决思路
    知识蒸馏网络扩展记忆回放
    场景识别[35]特征迁移模块学习相邻任务间的特征分布映射,提升模型的新任务学习能力,并避免了存储成本和推理时间的增加$ \surd $$ \surd $$ \times $
    地物分类[33]扩展域残差适应模块和解码器,学习新任务;设计重叠类别的知识蒸馏,应对不同任务的标签空间偏移$ \surd $$ \surd $$ \times $
    [27]约束新旧模型的低层特征逐像素表征一致,同时深层特征像素亲和矩阵相似,
    以保留在旧任务数据上学习到的像素交互信息
    $ \surd $$ \surd $$ \times $
    下载: 导出CSV

    表  8  面向可见光图像解译的任务增量学习性能对比

    解译任务研究工作评价指标数据集增量训练次数得分(%)发布时间
    场景识别[35]mACCAID[75]1086.74TGRS’2022
    BigEarthNet[94]595.89
    EuroSAT[95]294.85
    EuroSAT[95]$ \to $BigEarthNet[94]$ \to $RS-C11[96]$ \to $
    RSSCN7[97]$ \to $AID[75]$ \to $SIRI-WHU[82]$ \to $SAT-4[98]
    779.86
    地物分类[33]$ {\Delta }_{\mathrm{m}\mathrm{I}\mathrm{o}\mathrm{U}} $GID[99]$ \to $BDCI2020[100]$ \to $Deepglobe[86]$ \to $
    LoveDA-Urban[101]$ \to $LoveDA-Rural[101]
    5-5.46Remote Sens.’2023
    [27]mIoUDeepglobe[86]$ \to $Potsdam[72]$ \to $GCSS[85]366.27TGRS’2021
    Vaihingen[73]$ \to $Potsdam[72]279.72
    $ \to $:指示模型增量学习顺序
    下载: 导出CSV

    表  9  面向合成孔径雷达图像目标识别的类别增量学习方法总结

    研究工作 贡献 遗忘问题解决思路
    知识蒸馏 网络扩展 记忆回放
    [102] 基于广义最大覆盖的样本选择,降低计算成本 $ \times $ $ \times $ $ \surd $
    [56] 基于局部分布统计信息和全局分布密度信息选择代表性样本;评估测试样本的预测可靠性,并由此管理增量数据 $ \times $ $ \times $ $ \surd $
    [32] 特征编码器深层结构扩展结合记忆回放、知识蒸馏,应对遗忘问题 $ \surd $ $ \surd $ $ \surd $
    [44] 训练样本抽样加权和记忆增强的权重对齐,解决新旧类别不平衡导致的预测偏差 $ \surd $ $ \times $ $ \surd $
    [54] Openmax算法帮助模型识别未知类别,此后利用记忆回放赋予模型持续学习未知类别的能力 $ \times $ $ \times $ $ \surd $
    [39] 可分离学习策略缓解新旧类别不平衡导致的预测偏差 $ \surd $ $ \times $ $ \surd $
    [41] 样本抽样加权,构建类别均衡的训练批次,校正预测偏差 $ \surd $ $ \times $ $ \surd $
    [43] 类别分离损失解决新旧类别相似产生的混淆问题;偏差校正层应对新旧类别不平衡现象 $ \surd $ $ \times $ $ \surd $
    [46] 类别的有效样本数加权交叉熵损失,解决新旧类别不平衡导致的预测偏差 $ \times $ $ \times $ $ \surd $
    [36] 基于局部几何和统计信息的类边界样本选择,并利用SMOTE方法重采样,丰富旧类别样本 $ \times $ $ \times $ $ \surd $
    [55] 基于局部几何和统计信息的类边界样本选择 $ \times $ $ \times $ $ \surd $
    下载: 导出CSV

    表  10  面向合成孔径雷达图像目标识别的类别增量学习方法性能对比

    研究工作 网络架构 评价指标 数据集 每类存储量 增量训练次数 得分(%) 发布时间
    [38] ResNet-34 ACC MSTAR 50 10 83.42 TAES’2024
    [102] Autoencoder OA MSTAR 50 8 92.54 TGRS’2023
    [56] A-ConvNets MSTAR TGRS’2023
    [32] ViT-B ACC MSTAR 20 8 74.65 Remote Sens.’2023
    [44] ACC MSTAR$ + $OpenSARShip 200(11个类别) 12 93.87 GRSL’2023
    [54] CNN OA MSTAR 3 92.70 RadarConf’2023
    [39] DCFM-CNN ACC MSTAR 30 7 91.76 TGRS’2022
    OpenSARShip 30 3
    [41] ResNet-18 ACC MSTAR$ + $OpenSARShip 200(12个类别) 12 93.87 GRSL’2023
    [43] ResNet-18 ACC (top-5) MSTAR 20 10 97.17 Appli. Sci.’2022
    [46] ResNet-18 ACC OpenSARShip 3 51.15 IGARSS’2022
    [36] ACC MSTAR 10 TGRS’2020
    [55] ACC MSTAR 888(9个类别) 8 86.50 TGRS’2019
    $ + $:组合不同数据集模拟增量学习阶段
    下载: 导出CSV

    表  11  面向高光谱图像分类的增量学习方法总结

    增量学习类型研究工作贡献遗忘问题解决思路
    知识蒸馏网络扩展记忆回放
    类别增量学习[42]新旧类别平衡集优化偏差校正层,校准模型在新类别上的输出$ \surd $$ \times $$ \surd $
    [108]基于新旧类别的特征向量均值,提出线性规划方法更新分类器权重$ \times $$ \surd $$ \times $
    任务增量学习[109]基于度量学习的光谱-空间特征蒸馏和输出蒸馏帮助模型维持旧知识$ \surd $$ \times $$ \times $
    下载: 导出CSV

    表  12  面向高光谱图像分类的增量学习方法性能对比

    增量学习类型 研究工作 评价指标 数据集 增量训练次数 得分(%) 发布时间
    类别增量学习 [42] ACC PaviaU 3 85.76 Remote Sens.’2022
    Salinas 5 93.31
    Houston 4 86.54
    [108] ACC PaviaU 2 73.06 TCybernatics’2020
    Indian Pines
    Salinas
    任务增量学习 [109] mACC PaviaU$ \to $Indian Pines
    $ \to $Salinas$ \to $Houston
    4 72.84 TGRS’2022
    $ \to $:指示模型增量学习顺序
    下载: 导出CSV

    表  13  面向高光谱图像分类的增量学习常用数据集

    数据集PaviaU[105]Salinas[106]Houston[107]Indian Pines[110]
    采集地点意大利北部加利福尼亚州德克萨斯州印第安纳州
    采集设备ROSISAVIRIS-AVIRIS
    光谱覆盖范围(μm)0.43~0.860.4~0.250.38~1.050.4~2.5
    空间分辨率(m)1.33.72.520
    波段数量115224144220
    像素数量42776541291502921025
    类别数量9161516
    增量学习方法[42,108,109][42,108,109][42,109][108,109]
    下载: 导出CSV
  • [1] 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182–197. doi: 10.11834/ jrs.20210164.

    ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182–197. doi: 10.11834/jrs.20210164.
    [2] 梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001: 171–175.

    MEI Anxin, PENG Wanglu, QIN Qiming, et al. An Introduction to Remote Sensing[M]. Beijing: Higher Education Press, 2001: 171–175.
    [3] BI Qi, QIN Kun, ZHANG Han, et al. Local semantic enhanced ConvNet for aerial scene recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 6498–6511. doi: 10.1109/TIP.2021.3092816.
    [4] BI Qi, ZHOU Beichen, QIN Kun, et al. All grains, one scheme (AGOS): Learning multigrain instance representation for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5629217. doi: 10.1109/TGRS.2022.3201755.
    [5] YANG Yuqun, TANG Xu, CHEUNG Y M, et al. SAGN: Semantic-aware graph network for remote sensing scene classification[J]. IEEE Transactions on Image Processing, 2023, 32: 1011–1025. doi: 10.1109/TIP.2023.3238310.
    [6] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2844–2853. doi: 10.1109/CVPR.2019.00296.
    [7] HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2785–2794. doi: 10.1109/CVPR46437.2021.00281.
    [8] LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540.
    [9] LI Yansheng, CHEN Wei, HUANG Xin, et al. MFVNet: A deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4): 140305. doi: 10.1007/s11432-022-3599-y.
    [10] LIU Yinhe, SHI Sunan, WANG Junjue, et al. Seeing beyond the patch: Scale-adaptive semantic segmentation of high-resolution remote sensing imagery based on reinforcement learning[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 16822–16832. doi: 10.1109/ICCV51070.2023.01547.
    [11] BERGAMASCO L, BOVOLO F, and BRUZZONE L. A dual-branch deep learning architecture for multisensor and multitemporal remote sensing semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2147–2162. doi: 10.1109/JSTARS.2023.3243396.
    [12] PANG Chao, WU Jiang, DING Jian, et al. Detecting building changes with off-nadir aerial images[J]. Science China Information Sciences, 2023, 66(4): 140306. doi: 10.1007/s11432-022-3691-4.
    [13] WU Chen, DU Bo, and ZHANG Liangpei. Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9774–9788. doi: 10.1109/TPAMI.2023.3237896.
    [14] PANG Chao, WENG Xingxing, WU Jiang, et al. HiCD: Change detection in quality-varied images via hierarchical correlation distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611816. doi: 10.1109/TGRS.2024.3367778.
    [15] ALHICHRI H. Multitask classification of remote sensing scenes using deep neural networks[C]. Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1195–1198. doi: 10.1109/IGARSS.2018.8518874.
    [16] MASANA M, LIU Xialei, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513–5533. doi: 10.1109/TPAMI.2022.3213473.
    [17] DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi: 10.1109/TPAMI.2021.3057446.
    [18] BELOUADAH E, POPESCU A, and KANELLOS I. A comprehensive study of class incremental learning algorithms for visual tasks[J]. Neural Networks, 2021, 135: 38–54. doi: 10.1016/j.neunet.2020.12.003.
    [19] LIU Hao, ZHOU Yong, LIU Bing, et al. Incremental learning with neural networks for computer vision: A survey[J]. Artificial Intelligence Review, 2023, 56(5): 4557–4589. doi: 10.1007/s10462-022-10294-2.
    [20] 周大蔚, 汪福运, 叶翰嘉, 等. 基于深度学习的类别增量学习算法综述[J]. 计算机学报, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.

    ZHOU Dawei, WANG Fuyun, YE Hanjia, et al. Deep learning for class-incremental learning: A survey[J]. Chinese Journal of Computers, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.
    [21] 朱飞, 张煦尧, 刘成林. 类别增量学习研究进展和性能评价[J]. 自动化学报, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.

    ZHU Fei, ZHANG Xuyao, and LIU Chenglin. Class incremental learning: A review and performance evaluation[J]. Acta Automatica Sinica, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.
    [22] VAN DE VEN G M, TUYTELAARS T, and TOLIAS A S. Three types of incremental learning[J]. Nature Machine Intelligence, 2022, 4(12): 1185–1197. doi: 10.1038/s42256-022-00568-3.
    [23] HIHN H and BRAUN D A. Hierarchically structured task-agnostic continual learning[J]. Machine Learning, 2023, 112(2): 655–686. doi: 10.1007/s10994-022-06283-9.
    [24] SHAN Lianlei, WANG Weiqiang, LV Ke, et al. Class-incremental semantic segmentation of aerial images via pixel-level feature generation and task-wise distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5635817. doi: 10.1109/TGRS.2022.3231351.
    [25] CERMELLI F, MANCINI M, BULÓ S R, et al. Modeling the background for incremental and weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10099–10113. doi: 10.1109/TPAMI.2021.3133954.
    [26] SHAN Lianlei, WANG Weiqiang, LV Ke, et al. Class-incremental learning for semantic segmentation in aerial imagery via distillation in all aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5615712. doi: 10.1109/TGRS.2021.3135456.
    [27] FENG Yingchao, SUN Xian, DIAO Wenhui, et al. Continual learning with structured inheritance for semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5607017. doi: 10.1109/TGRS.2021.3076664.
    [28] RONG Xuee, WANG Peijin, DIAO Wenhui, et al. MiCro: Modeling cross-image semantic relationship dependencies for class-incremental semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5616218. doi: 10.1109/TGRS.2023.3297203.
    [29] RONG Xuee, SUN Xian, DIAO Wenhui, et al. Historical information-guided class-incremental semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622618. doi: 10.1109/TGRS.2022.3170349.
    [30] GE Jiayi, TANG Hong, YANG Naisen, et al. Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 105–128. doi: 10.1016/j.isprsjprs.2022.11.010.
    [31] YE Zhen, ZHANG Yu, ZHANG Jinxin, et al. A multiscale incremental learning network for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5606015. doi: 10.1109/TGRS.2024.3353737.
    [32] PAN Qidi, LIAO Kuo, HE Xuesi, et al. A class-incremental learning method for SAR images based on self-sustainment guidance representation[J]. Remote Sensing, 2023, 15(10): 2631. doi: 10.3390/rs15102631.
    [33] RUI Xue, LI Ziqiang, CAO Yang, et al. DILRS: Domain-incremental learning for semantic segmentation in multi-source remote sensing data[J]. Remote Sensing, 2023, 15(10): 2541. doi: 10.3390/rs15102541.
    [34] WENG Lean, YANG Wenqing, HU Boni, et al. MDINet: Multidomain incremental network for change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4402315. doi: 10.1109/TGRS.2023.3348878.
    [35] LU Xiaonan, SUN Xian, DIAO Wenhui, et al. LIL: Lightweight incremental learning approach through feature transfer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5611320. doi: 10.1109/TGRS.2021.3102629.
    [36] DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Class boundary exemplar selection based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5782–5792. doi: 10.1109/TGRS.2020.2970076.
    [37] LIU Weiwei, NIE Xiangli, ZHANG Bo, et al. Incremental learning with open-set recognition for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622916. doi: 10.1109/TGRS.2022.3173995.
    [38] FU Yimin, LIU Zhunga, WU Changyuan, et al. Class-incremental recognition of objects in remote sensing images with dynamic hybrid exemplar selection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024. doi: 10.1109/TAES.2024.3363114.
    [39] LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346.
    [40] XI Jiangbo, YAN Ziyun, JIANG Wandong, et al. Continual learning for scene classification of high resolution remote sensing images[C]. Proceedings of SPIE 12057, Twelfth International Conference on Information Optics and Photonics, Xi'an, China, 2021: 558–574. doi: 10.1117/12.2605919.
    [41] TANG Jiaxin, XIANG Deliang, ZHANG Fan, et al. Incremental SAR automatic target recognition with error correction and high plasticity[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1327–1339. doi: 10.1109/JSTARS.2022.3141485.
    [42] XU Meng, ZHAO Yuanyuan, LIANG Yajun, et al. Hyperspectral image classification based on class-incremental learning with knowledge distillation[J]. Remote Sensing, 2022, 14(11): 2556. doi: 10.3390/rs14112556.
    [43] ZHOU Yongsheng, ZHANG Shuo, SUN Xiaokun, et al. SAR target incremental recognition based on hybrid loss function and class-bias correction[J]. Applied Sciences, 2022, 12(3): 1279. doi: 10.3390/app12031279.
    [44] HUANG Heqing, GAO Fei, WANG Jun, et al. An incremental SAR target recognition framework via memory-augmented weight alignment and enhancement discrimination[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4005205. doi: 10.1109/LGRS.2023.3269480.
    [45] CHEN Xi, JIANG Jie, LI Zhiqiang, et al. An online continual object detector on VHR remote sensing images with class imbalance[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105549. doi: 10.1016/j.engappai.2022.105549.
    [46] ZHENG Zhi, NIE Xiangli, and ZHANG Bo. Fine-grained continual learning for SAR target recognition[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2207–2210. doi: 10.1109/IGARSS46834.2022.9884149.
    [47] AMMOUR N. Continual learning using data regeneration for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8012805. doi: 10.1109/LGRS.2021.3080036.
    [48] HINTON G, VINYALS O, and DEAN J. Distilling the knowledge in a neural network[C]. Proceedings of the 28th Annual Conference on Neural Information Processing Systems Workshops, Montreal, Canada, 2014: 1–9. (查阅网上资料, 未找到本条文献信息, 请确认) .
    [49] CHEN Jingzhou, WANG Shihao, CHEN Ling, et al. Incremental detection of remote sensing objects with feature pyramid and knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5600413. doi: 10.1109/TGRS.2020.3042554.
    [50] YANG Naisen and TANG Hong. GeoBoost: An incremental deep learning approach toward global mapping of buildings from VHR remote sensing images[J]. Remote Sensing, 2020, 12(11): 1794. doi: 10.3390/rs12111794.
    [51] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189–1232. doi: 10.1214/aos/1013203451.
    [52] WELLING M. Herding dynamical weights to learn[C]. Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009: 1121–1128. doi: 10.1145/1553374.1553517.
    [53] BHAT S D, BANERJEE B, CHAUDHURI S, et al. CILEA-NET: Curriculum-based incremental learning framework for remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5879–5890. doi: 10.1109/JSTARS.2021.3084408.
    [54] OVEIS A H, GIUSTI E, GHIO S, et al. Incremental learning in synthetic aperture radar images using openmax algorithm[C]. Proceedings of 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149627.
    [55] DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
    [56] DANG Sihang, CUI Zongyong, CAO Zongjie, et al. Distribution reliability assessment-based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5208413. doi: 10.1109/TGRS.2023.3277873.
    [57] LI Yuhua and MAGUIRE L. Selecting critical patterns based on local geometrical and statistical information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1189–1201. doi: 10.1109/TPAMI.2010.188.
    [58] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680. doi: 10.5555/2969033.2969125.
    [59] KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–14.
    [60] AMMOUR N. Memory using data generator in continual learning for remote sensing scene classification[C]. Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4924–4927. doi: 10.1109/IGARSS47720.2021.9553520.
    [61] 李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12): 1211–1216. doi: 10.13485/jc.nki1.1-20892.0140.187. (查阅网上资料,DOI打不开,请确认) .

    LI Deren, ZHANG Liangpei, and XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211–1216. doi: 10.13485/jc.nki1.1-20892.0140.187.
    [62] 龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8): 1013–1022. doi: 10.11947/j.AGCS.2021.20210085. (查阅网上资料,DOI打不开,请确认) .

    GONG Jianya, XU Yue, HU Xianyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013–1022. doi: 10.11947/j.AGCS.2021.20210085.
    [63] AMMOUR N, BAZI Y, ALHICHRI H, et al. Continual learning approach for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8000905. doi: 10.1109/LGRS.2020.3019071.
    [64] ZHAO Ling, XU Linrui, ZHAO Li, et al. Continual learning for remote sensing image scene classification with prompt learning[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6012005. doi: 10.1109/LGRS.2023.3328981.
    [65] WANG Zifeng, ZHANG Zizhao, LEE C, et al. Learning to prompt for continual learning[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 139–149. doi: 10.1109/CVPR52688.2022.00024.
    [66] YE Dingqi, PENG Jian, LI Haifeng, et al. Better memorization, better recall: A lifelong learning framework for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5626814. doi: 10.1109/TGRS.2022.3190392.
    [67] TASAR O, TARABALKA Y, and ALLIEZ P. Incremental learning for semantic segmentation of large-scale remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3524–3537. doi: 10.1109/JSTARS.2019.2925416.
    [68] TASAR O, TARABALKA Y, and ALLIEZ P. Continual learning for dense labeling of satellite images[C]. Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4943–4946. doi: 10.1109/IGARSS.2019.8898615.
    [69] LI Junxi, SUN Xian, DIAO Wenhui, et al. Class-incremental learning network for small objects enhancing of semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5612920. doi: 10.1109/TGRS.2021.3124303.
    [70] YANG Yi and NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 270–279. doi: 10.1145/1869790.1869829.
    [71] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
    [72] International Society for Photogrammetry and Remote Sensing. 2D semantic labeling contest–Potsdam[EB/OL]. https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx, 2024. (查阅网上资料,未能确认年份信息,请确认) .
    [73] International Society for Photogrammetry and Remote Sensing. 2D semantic labeling-Vaihingen data[EB/OL]. https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx, 2024. (查阅网上资料,未能确认年份信息,请确认) .
    [74] LI Haifeng, JIANG Hao, GU Xin, et al. CLRS: Continual learning benchmark for remote sensing image scene classification[J]. Sensors, 2020, 20(4): 1226. doi: 10.3390/s20041226.
    [75] XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
    [76] WAQAS ZAMIR S, ARORA A, GUPTA A, et al. ISAID: A large-scale dataset for instance segmentation in aerial images[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 28–37. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认) .
    [77] CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998.
    [78] DI Yanghua, JIANG Zhiguo, and ZHANG Haopeng. A public dataset for fine-grained ship classification in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 747. doi: 10.3390/rs13040747.
    [79] ZHOU Weixun, NEWSAM S, LI Congmin, et al. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 197–209. doi: 10.1016/j.isprsjprs.2018.01.004.
    [80] LI Haifeng, DOU Xin, TAO Chao, et al. RSI-CB: A large-scale remote sensing image classification benchmark using crowdsourced data[J]. Sensors, 2020, 20(6): 1594. doi: 10.3390/s20061594.
    [81] WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987.
    [82] ZHAO Bei, ZHONG Yanfei, XIA Guisong, et al. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2108–2123. doi: 10.1109/TGRS.2015.2496185.
    [83] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418.
    [84] CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
    [85] The 2020 Gaofen Challenge. Automated high-resolution earth observation image interpretation: The high-resolution visible light images semantic labeling contest[EB/OL]. http://en.sw.chreos.org. (查阅网上资料,未找到本条文献信息,请确认) .
    [86] DEMIR I, KOPERSKI K, LINDENBAUM D, et al. DeepGlobe 2018: A challenge to parse the earth through satellite images[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 172–181. doi: 10.1109/CVPRW.2018.00031.
    [87] 李雪, 姚光乐, 王洪辉, 等. 基于样本增量学习的遥感影像分类[J]. 计算机应用, 2024, 44(3): 732–736. doi: 10.11772/j.issn.1001-9081.2023030366.

    LI Xue, YAO Guangle, WANG Honghui, et al. Remote sensing image classification based on sample incremental learning[J]. Journal of Computer Applications, 2024, 44(3): 732–736. doi: 10.11772/j.issn.1001-9081.2023030366.
    [88] WANG Ming, YU Dayu, HE Wanting, et al. Domain-incremental learning for fire detection in space-air-ground integrated observation network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103279. doi: 10.1016/j.jag.2023.103279.
    [89] WANG Ming, JIANG Liangcun, YUE Peng, et al. FASDD: An open-access 100, 000-level flame and smoke detection dataset for deep learning in fire detection[J]. Earth System Science Data. doi: 10.5194/essd-2023-73.
    [90] SHAMSOSHOARA A, AFGHAH F, RAZI A, et al. Aerial imagery pile burn detection using deep learning: The FLAME dataset[J]. Computer Networks, 2021, 193: 108001. doi: 10.1016/j.comnet.2021.108001.
    [91] GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 10–17.
    [92] SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604816. doi: 10.1109/TGRS.2021.3085870.
    [93] LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2: 565–571. doi: 10.5194/isprs-archives-XLII-2-565-2018.
    [94] SUMBUL G, CHARFUELAN M, DEMIR B, et al. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding[C]. Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5901–5904. doi: 10.1109/IGARSS.2019.8900532.
    [95] HELBER P, BISCHKE B, DENGEL A, et al. EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2217–2226. doi: 10.1109/JSTARS.2019.2918242.
    [96] ZHAO Lijun, TANG Ping, and HUO Lianzhi. Feature significance-based multibag-of-visual-words model for remote sensing image scene classification[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035004. doi: 10.1117/1.JRS.10.035004.
    [97] ZOU Qin, NI Lihao, ZHANG Tong, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321–2325. doi: 10.1109/LGRS.2015.2475299.
    [98] BASU S, GANGULY S, MUKHOPADHYAY S, et al. DeepSat: A learning framework for satellite imagery[C]. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, USA, 2015: 37. doi: 10.1145/2820783.2820816.
    [99] TONG Xinyi, XIA Guisong, LU Qikai, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322. doi: 10.1016/j.rse.2019.111322.
    [100] The 2020 BDCI Competitions. Remote sensing image segmentation[EB/OL].https://www.datafountain.cn/competitions/475. (查阅网上资料,未找到对应的英文翻译,请确认) (查阅网上资料,本条文献为中文文献,请补充) .
    [101] WANG Junjue, ZHENG Zhuo, MA Ailong, et al. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation[C]. Proceedings of the 35th Conference on Neural Information Processing Systems Track on Datasets and Benchmarks, 2021: 1–12. (查阅网上资料, 未找到出版地信息, 请补充) .
    [102] MA Xiaojie, JI Kefeng, FENG Sijia, et al. Open set recognition with incremental learning for SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5106114. doi: 10.1109/TGRS.2023.3283423.
    [103] KEYDEL E R, LEE S W, and MOORE J T. Mstar extended operating conditions: A tutorial[C]. Proceedings of SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242. doi: 10.1117/12.242059.
    [104] HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARship: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672.
    [105] GRAÑA M, VEGANZONS M A, and AYERDI B. Hyperspectral remote sensing scenes: Pavia Centre and university[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University. (查阅网上资料,请补充引用日期) .
    [106] GRAÑA M, VEGANZONS M A, and AYERDI B. Hyperspectral remote sensing scenes: Salinas[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas. (查阅网上资料,请补充引用日期) .
    [107] 2013 IEEE GRSS data fusion contest-fusion of hyperspectral and liDAR data[EB/OL]. https://hyperspectral.ee.uh.edu/?page_id=459. (查阅网上资料,请补充作者及引用日期) .
    [108] BAI Jing, YUAN Anran, XIAO Zhu, et al. Class incremental learning with few-shots based on linear programming for hyperspectral image classification[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5474–5485. doi: 10.1109/TCYB.2020.3032958.
    [109] ZHAO Wenzhi, PENG Rui, WANG Qiao, et al. Life-long learning with continual spectral-spatial feature distillation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5544214. doi: 10.1109/TGRS.2022.3222520.
    [110] BAUMGARDNER M F, BIEHL L L, and LANDGREBE D A. 220 band aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3[EB/OL]. https://purr.purdue.edu/publications/1947/1, 2015.
    [111] LENCZNER G, CHAN-HON-TONG A, LUMINARI N, et al. Weakly-supervised continual learning for class-incremental segmentation[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4843–4846. doi: 10.1109/IGARSS46834.2022.9884547.
    [112] ZHU Zining, WANG Peijin, DIAO Wenhui, et al. Few-shot incremental learning with continual prototype calibration for remote sensing image fine-grained classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196: 210–227. doi: 10.1016/j.isprsjprs.2022.12.024.
    [113] ZHAO Yan, ZHAO Lingjun, DING Ding, et al. Few-shot class-incremental SAR target recognition via cosine prototype learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5212718. doi: 10.1109/TGRS.2023.3298016.
    [114] WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
    [115] XU Zekai, ZHANG Mingyi, HOU Jiayue, et al. Delving into transformer for incremental semantic segmentation[J]. arXiv: 2211.10253, 2022. (查阅网上资料, 未能确认文献类型, 请确认) .
  • 加载中
图(5) / 表(13)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  34
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-05-15
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回