高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于自适应容错链路的片上网络设计与研究

徐冬雨 欧阳一鸣 黄正峰 李建华 梁华国

徐冬雨, 欧阳一鸣, 黄正峰, 李建华, 梁华国. 一种基于自适应容错链路的片上网络设计与研究[J]. 电子与信息学报, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162
引用本文: 徐冬雨, 欧阳一鸣, 黄正峰, 李建华, 梁华国. 一种基于自适应容错链路的片上网络设计与研究[J]. 电子与信息学报, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162
XU Dongyu, OUYANG Yiming, HUANG Zhengfeng, LI Jianhua, LIANG Huaguo. A Design of On-chip Network with Self-adaptive Fault-Tolerant Link[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162
Citation: XU Dongyu, OUYANG Yiming, HUANG Zhengfeng, LI Jianhua, LIANG Huaguo. A Design of On-chip Network with Self-adaptive Fault-Tolerant Link[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4092-4100. doi: 10.11999/JEIT240162

一种基于自适应容错链路的片上网络设计与研究

doi: 10.11999/JEIT240162
基金项目: 国家自然科学基金( 62374049, 62174048, 62274052)
详细信息
    作者简介:

    徐冬雨:男,讲师,研究方向为集成芯片与芯粒技术、可重构片上互连网络架构

    欧阳一鸣:男,教授,研究方向为片上系统与片上网络

    黄正峰:男,教授,研究方向为集成电路容错设计

    李建华:男,副教授,研究方向为计算机体系结构、存储系统、片上网络

    梁华国:男,教授,研究方向为数字系统设计自动化

    通讯作者:

    欧阳一鸣 oyymhfut@163.com

  • 中图分类号: TN402

A Design of On-chip Network with Self-adaptive Fault-Tolerant Link

Funds: The National Natural Science Foundation of China (62374049, 62174048, 62274052)
  • 摘要: 随着芯片制程不断深入到亚微纳米级别,技术节点的持续缩小加速了片上网络中链路故障的发生。故障链路的增多降低了可用的路由路径数量,并可能导致严重的流量拥塞甚至系统崩溃。为了保证在遭遇故障链路时数据包的正常传输,该文提出一种基于自适应容错链路的片上网络设计(AFL_NoC),它能够将遭遇故障链路的数据包转发到另一条可逆链路上。该方案包括了可逆链路的具体实现以及相应的分布式控制协议。这种动态容错链路设计充分利用了网络中空闲的可用链路资源,确保了在遭遇链路故障的情况下网络通信不会中断。与先进的容错偏转路由算法QFCAR-W相比,AFL_NoC平均延迟降低10%,面积开销减少了14.2%,功耗开销减少了9.3%。
  • 图  1  可逆链路功能与电路实现

    图  2  可逆链路的两个功能实现

    图  3  RFL_NoC架构

    图  4  路由器间自适应链路的控制机制

    图  5  路由器间链路的主/从状态机

    图  6  路由器间链路的永久故障

    图  7  面向链路故障的容错设计

    图  8  不同流量模式下,各个方案在不同故障率的平均延迟随网络注入率的变化

    图  9  不同流量模式下,各个方案在不同链路故障率的饱和吞吐量

  • [1] LIANG Huaguo, XU Xiumin, HUANG Zhengfeng, et al. A methodology for characterization of SET propagation in SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2985–2992. doi: 10.1109/TNS.2016.2620165.
    [2] WANG Ke and LOURI A. CURE: A high-performance, low-power, and reliable network-on-chip design using reinforcement learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(9): 2125–2138. doi: 10.1109/TPDS.2020.2986297.
    [3] BHOWMIK B. Maximal connectivity test with channel-open faults in on-chip communication networks[J]. Journal of Electronic Testing, 2020, 36(3): 385–408. doi: 10.1007/S10836-020-05878-1.
    [4] DITOMASO D, BORATEN T, KODI A, et al. Dynamic error mitigation in NoCs using intelligent prediction techniques[C]. 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, China, 2016: 1–12. doi: 10.1109/MICRO.2016.7783734.
    [5] CHANG Y C, GONG C S A, and CHIU C T. Fault-tolerant mesh-based NoC with router-level redundancy[J]. Journal of Signal Processing Systems, 2020, 92(4): 345–355. doi: 10.1007/S11265-019-01476-3.
    [6] GUO Pengxing, HOU Weigang, GUO Lei, et al. Fault-tolerant routing mechanism in 3D optical network-on-chip based on node reuse[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(3): 547–564. doi: 10.1109/TPDS.2019.2939240.
    [7] NARAYANASAMY P and GOPALAKRISHNAN S. Novel fault tolerance topology using corvus seek algorithm for application specific NoC[J]. Integration, 2023, 89: 146–154. doi: 10.1016/J.VLSI.2022.11.011.
    [8] SLEEBA S Z, JOSE J, and MINI M G. Energy-efficient fault tolerant technique for deflection routers in two-dimensional mesh Network-on-Chips[J]. IET Computers & Digital Techniques, 2018, 12(3): 69–79. doi: 10.1049/IET-CDT.2017.0006.
    [9] SAMALA J, TAKAWALE H, CHOKHANI Y, et al. Fault-tolerant routing algorithm for mesh based NoC using reinforcement learning[C]. 2020 24th International Symposium on VLSI Design and Test (VDAT), Bhubaneswar, India, 2020: 1–6. doi: 10.1109/VDAT50263.2020.9190340.
    [10] LIU Yi, GUO Rujia, XU Changqing, et al. A Q-learning-based fault-tolerant and congestion-aware adaptive routing algorithm for networks-on-chip[J]. IEEE Embedded Systems Letters, 2022, 14(4): 203–206. doi: 10.1109/LES.2022.3176233.
    [11] JAIN A, LAXMI V, TRIPATHI M, et al. TRACK: An algorithm for fault-Tolerant, dynamic and scalable 2D mesh network-on-chip routing reconfiguration[J]. Integration, 2020, 72: 92–110. doi: 10.1016/J.VLSI.2020.01.005.
    [12] ZHANG Ying, HONG Xinpeng, CHEN Zhongsheng, et al. A deterministic-path routing algorithm for tolerating many faults on very-large-scale network-on-chip[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 2021, 26(1): 8. doi: 10.1145/3414060.
    [13] LI Jiao, QIN Chaoqun, and SUN Xuecheng. An efficient adaptive routing algorithm for the Co-optimization of fault tolerance and congestion awareness based on 3D NoC[J]. Microelectronics Journal, 2023, 142: 105989. doi: 10.1016/J.MEJO.2023.105989.
    [14] RIZK M, MARTIN K J M, and DIGUET J P. Run-time remapping algorithm of dataflow actors on NoC-based heterogeneous MPSoCs[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 3959–3976. doi: 10.1109/TPDS.2022.3177957.
    [15] WANG K, LOURI A, KARANTH A, et al. IntelliNoC: A holistic design framework for energy-efficient and reliable on-chip communication for manycores[C]. Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, USA, 2019: 589–600. doi: 10.1145/3307650.3322274.
    [16] ZHENG Hao and LOURI A. Agile: A learning-enabled power and performance-efficient network-on-chip design[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 223–236. doi: 10.1109/TETC.2020.3003496.
    [17] LAN Y C, LIN H A, LO S H, et al. A bidirectional NoC (BiNoC) architecture with dynamic self-reconfigurable channel[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, 30(3): 427–440. doi: 10.1109/TCAD.2010.2086930.
    [18] FARROKHBAKHT H, KAO H, HASAN K, et al. Pitstop: Enabling a virtual network free network-on-chip[C]. 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea (South), 2021: 682–695. doi: 10.1109/HPCA51647.2021.00063.
    [19] SUN Chen, CHEN C H O, KURIAN G, et al. DSENT-a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling[C]. 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, Lyngby, Denmark, 2012: 201–210. doi: 10.1109/NOCS.2012.31.
    [20] ZHOU Wu, OUYANG Yiming, XU Dongyu, et al. Energy-efficient multiple network-on-chip architecture with bandwidth expansion[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(4): 442–455. doi: 10.1109/TVLSI.2023.3244859.
  • 加载中
图(9)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  57
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-09-12
  • 网络出版日期:  2024-09-28
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回