高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用近清图像空间搜索的深度图像先验降噪模型

徐少平 熊明海 周常飞

徐少平, 熊明海, 周常飞. 利用近清图像空间搜索的深度图像先验降噪模型[J]. 电子与信息学报. doi: 10.11999/JEIT240114
引用本文: 徐少平, 熊明海, 周常飞. 利用近清图像空间搜索的深度图像先验降噪模型[J]. 电子与信息学报. doi: 10.11999/JEIT240114
XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240114
Citation: XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240114

利用近清图像空间搜索的深度图像先验降噪模型

doi: 10.11999/JEIT240114
基金项目: 国家自然科学基金(62162043)
详细信息
    作者简介:

    徐少平:男,博士,教授,博士生导师,研究方向为数字图像处理、机器视觉、虚拟手术模拟

    熊明海:男,硕士生,研究方向为数字图像处理、机器视觉

    周常飞:男,硕士生,研究方向为数字图像处理、机器视觉

    通讯作者:

    徐少平 xushaoping@ncu.edu.cn

  • 中图分类号: TP391.4

Deep Image Prior Denoising Model Using Relatively Clean Image Space Search

Funds: The National Natural Science Foundation of China (62162043)
  • 摘要: 鉴于深度图像先验(DIP)降噪模型的性能高度依赖于目标图像所确定的搜索空间,该文提出一种新的基于近清图像空间搜索策略的改进降噪模型。首先,使用当前两种主流有监督降噪模型对同一场景下两张噪声图像分别进行降噪,所获得两张降噪后图像称为近清图像;其次,采用随机采样融合法将两张近清图像融合后作为网络输入,同时以两张近清图像替换噪声图像作为双目标图像以更好地约束搜索空间,进而在更为接近参考图像的空间范围内搜索可能的图像作为降噪后图像;最后,将原DIP模型的多尺度UNet网络简化为单尺度模式,同时引入Transformer模块以增强网络对长距离像素点之间的建模能力,从而在保证网络搜索能力的基础上提升模型的执行效率。实验结果表明:所提改进模型在降噪效果和执行效率两个方面显著优于原DIP模型,在降噪效果方面也超过了主流有监督降噪模型。
  • 图  1  RS-DIP降噪模型降噪原理的可视化示意图

    图  2  RS-DIP网络模型框架图

    图  3  各对比方法在PolyU图像上的降噪效果对比

    表  1  不同降噪模型组合对降噪性能的影响(dB)

    算法组合 Restormer+
    DnCNN
    Restormer+
    FFDNet
    Restormer+
    DAGL
    DAGL+
    DnCNN
    DAGL+
    FFDNet
    DAGL+
    SwinIR
    Restormer+
    SwinIR
    1 36.33 36.29 35.79 36.19 35.77 36.08 36.44
    2 36.74 36.64 36.06 36.43 36.14 36.48 36.84
    3 35.25 34.78 34.78 34.78 35.57 35.28 35.03
    4 31.33 31.49 31.48 31.55 31.56 31.62 31.58
    5 38.41 37.00 37.57 38.21 36.86 37.30 37.31
    6 38.51 40.11 38.53 38.40 39.72 39.82 40.23
    7 30.19 30.27 30.02 29.58 29.78 29.77 30.32
    8 34.52 34.69 34.17 33.78 33.98 34.03 34.70
    9 35.83 35.41 34.79 34.53 34.81 34.80 35.50
    10 36.65 36.38 36.04 36.14 35.85 35.94 36.48
    平均值 35.27 35.31 34.98 34.96 35.00 35.11 35.44
    下载: 导出CSV

    表  2  随机采样操作对模型降噪性能的影响比较(dB)

    对比算法RS-DIP-1RS-DIP
    136.4236.44
    236.9036.84
    334.9335.03
    431.5931.58
    537.1837.31
    640.1440.23
    730.3030.32
    834.7034.70
    935.4935.50
    1036.3636.48
    平均值35.4035.44
    下载: 导出CSV

    表  3  简化骨干网络对模型降噪性能的影响(dB)

    对比算法RS-DIP-2RS-DIP
    136.2236.44
    236.7936.84
    335.0735.03
    431.4831.58
    536.8337.31
    640.2140.23
    730.3130.32
    834.5434.70
    935.4335.50
    1036.2036.48
    平均值35.3135.44
    下载: 导出CSV

    表  4  各对比方法在各真实噪声数据集上所获得的PSNR值比较(dB)

    数据集 PolyU NIND SIDD
    BM3D 33.90 32.87 38.00
    DnCNN 33.28 31.33 32.84
    FFDNet 34.25 32.72 37.54
    DAGL 33.44 32.10 42.47
    Restormer* 33.47 35.20 44.17
    SwinIR* 34.45 33.84 37.24
    DIP 34.43 33.79 39.42
    RS-DIP 35.44 35.46 44.60
    *表示该模型被用于处理噪声图像,在NIND和PolyU数据集上分别使用Restormer和SwinIR作为预处理算法处理不同的噪声图像,而在SIDD数据集上仅使用Restormer作为预处理算法处理两张噪声图像。
    下载: 导出CSV
  • [1] JIN Xin, ZHANG Li, SHAN Chaowei, et al. Dual prior learning for blind and blended image restoration[J]. IEEE Transactions on Image Processing, 2022, 31: 1042–1056. doi: 10.1109/TIP.2021.3135482.
    [2] 白勇强, 禹晶, 李一秾, 等. 基于深度先验的盲图像去模糊算法[J]. 电子学报, 2023, 51(4): 1050–1067. doi: 10.12263/DZXB.20211483.

    BAI Yongqiang, YU Jing, LI Yinong et al. Deep prior-based blind image deblurring[J]. Acta Electronica Sinica, 2023, 51(4): 1050–1067. doi: 10.12263/DZXB.20211483.
    [3] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
    [4] GOYAL B, DOGRA A, AGRAWAL S, et al. Image denoising review: From classical to state-of-the-art approaches[J]. Information Fusion, 2020, 55: 220–244. doi: 10.1016/j.inffus.2019.09.003.
    [5] 周建新, 周凤祺. 基于改进协同量子粒子群的小波去噪分析研究[J]. 电光与控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637X.2022.01.010.

    ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637X.2022.01.010.
    [6] 曾理, 熊西林, 陈伟. 低剂量CT图像降噪的深度图像先验的目标偏移加速算法[J]. 电子与信息学报, 2023, 45(6): 2188–2196. doi: 10.11999/JEIT220551.

    ZENG Li, XIONG Xilin, and CHEN Wei. Deep image prior acceleration method for target offset in low-dose CT images denoising[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2188–2196. doi: 10.11999/JEIT220551.
    [7] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [8] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
    [9] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
    [10] ANWAR S and BARNES N. Real image denoising with feature attention[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3155–3164. doi: 10.1109/ICCV.2019.00325.
    [11] LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
    [12] KRULL A, BUCHHOLZ T O, and JUG F. Noise2void-learning denoising from single noisy images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2124–2132. doi: 10.1109/CVPR.2019.00223.
    [13] HUANG Tao, LI Songjiang, JIA Xu, et al. Neighbor2Neighbor: Self-supervised denoising from single noisy images[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14776–14785. doi: 10.1109/CVPR46437.2021.01454.
    [14] LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454. doi: 10.1109/CVPR.2018.00984.
    [15] HENDRYCKS D and GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. https://arxiv.org/abs/1606.08415, 2023.
    [16] XU Jun, LI Hui, LIANG Zhetong, et al. Real-world noisy image denoising: A new benchmark[EB/OL]. https://arxiv.org/abs/1804.02603, 2018.
    [17] YANG Yu, XU Haifeng, QI Bin, et al. Stroke screening data modeling based on openEHR and NINDS Stroke CDE[C]. 2020 IEEE International Conference on BioInformatics and BioMedicine (BIBM), Seoul, Korea (South), 2020: 2147–2152. doi: 10.1109/BIBM49941.2020.9313127.
    [18] ABDELHAMED A, LIN S, and BROWN M S. A high-quality denoising dataset for smartphone cameras[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1692–1700. doi: 10.1109/CVPR.2018.00182.
    [19] 徐胜军, 杨华, 李明海, 等. 基于双频域特征聚合的低照度图像增强[J]. 光电工程, 2023, 50(12): 230225. doi: 10.12086/oee.2023.230225.

    XU Shengjun, YANG Hua, LI Minghai, et al. Low-light image enhancement based on dual-frequency domain feature aggregation[J]. Opto-Electronic Engineering, 2023, 50(12): 230225. doi: 10.12086/oee.2023.230225.
    [20] SOH J W, CHO S, and CHO N I. Meta-transfer learning for zero-shot super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3513–3522. doi: 10.1109/CVPR42600.2020.00357.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  29
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-09-07
  • 网络出版日期:  2024-09-29

目录

    /

    返回文章
    返回