高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频谱地图重构的辐射源识别

王雪刚 王方刚 王意卓

王雪刚, 王方刚, 王意卓. 基于频谱地图重构的辐射源识别[J]. 电子与信息学报, 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050
引用本文: 王雪刚, 王方刚, 王意卓. 基于频谱地图重构的辐射源识别[J]. 电子与信息学报, 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050
WANG Xuegang, WANG Fanggang, WANG Yizhuo. Specific Emitter Identification Based on Radio Environment Map Reconstruction[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050
Citation: WANG Xuegang, WANG Fanggang, WANG Yizhuo. Specific Emitter Identification Based on Radio Environment Map Reconstruction[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3949-3956. doi: 10.11999/JEIT240050

基于频谱地图重构的辐射源识别

doi: 10.11999/JEIT240050
基金项目: 中央高校基本科研业务费(2022JBQY004),国家重点研发计划(2020YFB1806903),国家自然科学基金(62221001),国家自然科学基金铁路基础研究联合基金(U2368201)
详细信息
    作者简介:

    王雪刚:男,博士生,研究方向为频谱感知、信号识别

    王方刚:男,教授,研究方向为宽带移动通信系统与专用移动通信、信息处理与人工智能

    王意卓:男,研究方向为无线通信与信号处理

    通讯作者:

    王方刚 wangfg@bjtu.edu.cn

  • 中图分类号: TN911.7

Specific Emitter Identification Based on Radio Environment Map Reconstruction

Funds: The Fundamental Research Funds for the Central Universities (2022JBQY004), The National Key R&D Program of China (2020YFB1806903), The National Natural Science Foundation of China (62221001), The Joint Funds for Railway Fundamental Research of National Natural Science Foundation of China (U2368201)
  • 摘要: 无线环境地图(REM)是呈现电磁态势的一种有效形式,考虑实际观测的不完整频谱地图受到干扰和噪声污染的问题,该文对频谱地图进行重构,并在此基础上完成辐射源识别。首先,将复杂电磁环境下的频谱地图建模为高维张量,在预处理中通过线性插值对其初始化补全。然后,使用视觉Transformer模型解决语义分割问题以识别频谱语义区域,区域中仅单一辐射源功率占主导,每个语义张量的低秩性得以保留。提出了一种压缩式张量分解算法,并采用交替方向乘子法(ADMM)在语义区域中重构期望信号频谱和干扰;最后,在重构的频谱地图上检测未知辐射源的位置。该方法能够充分利用频谱数据的低秩性,适用于广域多辐射源个体的电磁场景。实验结果表明,所提方法比现有方法具有更优的重构性能,降低了达到相同频谱地图恢复精度时对观测样本比例的要求,并能够准确检测辐射源。
  • 图  1  频谱地图重构示意图

    图  2  基于 ViT 的频谱语义分割模型结构

    图  3  不同算法频谱地图重构性能

    图  4  基于语义分割的频谱重构算法收敛性

    图  5  辐射源检测性能比较

    1  基于语义分割的频谱地图重构算法

     输入:初始补全张量$ {{\tilde{ {\boldsymbol{\mathcal{Y}}}}}_m} $,语义标签$ {{{\boldsymbol{\mathcal{L}}}}_m} $, $ m \in {{\mathcal{I}}_M} $,迭代次数K
     输出:重构的期望频谱$ {\tilde {\boldsymbol{\mathcal{X}}}} $;
     初始化:$ {\tilde{ {\boldsymbol{\mathcal{X}}}}}_m^{(1)} = {\bf{0}} $, $ {\tilde {{\boldsymbol{\mathcal{S}}}}}_m^{(1)} = 0 $, $ {\lambda ^{(1)}} = 0 $, $ {\beta ^{(1)}} = {10^{ - 6}} $,
     $ {\beta _{\max }} = {10^{10}} $, $ \rho = 1.2 $,m = 1, $ k = 1 $;
     (1) 当$ ||{{\boldsymbol{\mathcal{X}}}_m}||_{{\mathrm{F}}} ^2 $未收敛且$ k < K $,重复步骤(2)~(7);
     (2)  使用式(22)更新$ {\boldsymbol{\mathcal{X}}}_m^{(k + 1)} $;
     (3)  使用式(24)更新$ {{\boldsymbol{\mathcal{S}}}}_m^{(k + 1)} $;
     (4)  使用式(25)更新$ \lambda _m^{(k + 1)} $;
     (5)  使用式(26)更新$ c_m^{(k + 1)} $;
     (6)  $ {\beta ^{(k + 1)}} = \min \{ \rho {\beta ^{(k)}},{\beta _{{\text{max}}}}\} $;
     (7)  k = k+1;
     (8) m = m+1;
     (9) 重复步骤(1)、步骤(8),直到m = M
     (10) $ {\tilde {\boldsymbol{\mathcal{X}}}}{\text{ = }}\displaystyle\sum\nolimits_{m = 1}^M {{{\boldsymbol{\mathcal{X}}}_m} \odot } {{{\boldsymbol{\mathcal{L}}}}_m} $。
    下载: 导出CSV
  • [1] HO K C and LE T K. Integrating AOA with TDOA for joint source and sensor localization[J]. IEEE Transactions on Signal Processing, 2023, 71: 2087–2102. doi: 10.1109/TSP.2023.3280417.
    [2] LIU Yan, SHEN Yuan, and WIN M Z. Single-anchor localization and synchronization of full-duplex agents[J]. IEEE Transactions on Communications, 2019, 67(3): 2355–2367. doi: 10.1109/TCOMM.2018.2878843.
    [3] YILMAZ H B and TUGCU T. Location estimation-based radio environment map construction in fading channels[J]. Wireless Communications and Mobile Computing, 2015, 15(3): 561–570. doi: 10.1002/wcm.2367.
    [4] SHIN B, LEE J H, KIM C, et al. LTE RSSI based vehicular localization system in long tunnel environment[J]. IEEE Transactions on Industrial Informatics, 2023, 19(11): 11102–11114. doi: 10.1109/TII.2023.3240690.
    [5] CHAUDHARI S and CABRIC D. Cyclic weighted centroid algorithm for transmitter localization in the presence of interference[J]. IEEE Transactions on Cognitive Communications and Networking, 2016, 2(2): 162–177. doi: 10.1109/TCCN.2016.2586078.
    [6] 张国勇, 王军, 陈霄南, 等. 基于空间稀疏采样的频谱态势生成: 模型与算法[J]. 中国科学: 信息科学, 2022, 52(11): 2011–2036. doi: 10.1360/SSI-2021-0382.

    ZHANG Guoyong, WANG Jun, CHEN Xiaonan, et al. Spectrum situation generation from sparse spatial sampling: Model and algorithm[J]. Scientia Sinica Informationis, 2022, 52(11): 2011–2036. doi: 10.1360/SSI-2021-0382.
    [7] DEBROY S, BHATTACHARJEE S, and CHATTERJEE M. Spectrum map and its application in resource management in cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(4): 406–419. doi: 10.1109/TCCN.2016.2517001.
    [8] SATO K, SUTO K, INAGE K, et al. Space-frequency-interpolated radio map[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 714–725. doi: 10.1109/TVT.2021.3049894.
    [9] ZHANG Yongliang and MA Lin. Radio map crowdsourcing update method using sparse representation and low rank matrix recovery for WLAN indoor positioning system[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1188–1191. doi: 10.1109/LWC.2021.3061539.
    [10] CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
    [11] SIDIROPOULOS N D, DE LATHAUWER L, FU Xiao, et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3551–3582. doi: 10.1109/TSP.2017.2690524.
    [12] TANG Mengyun, DING Guoru, WU Qihui, et al. A joint tensor completion and prediction scheme for multi-dimensional spectrum map construction[J]. IEEE Access, 2016, 4: 8044–8052. doi: 10.1109/ACCESS.2016.2627243.
    [13] LIN Yun, TU Ya, DOU Zheng, et al. Contour Stella image and deep learning for signal recognition in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 34–46. doi: 10.1109/TCCN.2020.3024610.
    [14] WANG Chenyue, WU Yuhang, ZHOU Fuhui, et al. Accurate spectrum map construction using an intelligent frequency-spatial reasoning approach[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 3460–3465. doi: 10.1109/GLOBECOM48099.2022.10001024.
    [15] SHRESTHA S, FU Xiao, and HONG Mingyi. Deep spectrum cartography: Completing radio map tensors using learned neural models[J]. IEEE Transactions on Signal Processing, 2022, 70: 1170–1184. doi: 10.1109/TSP.2022.3145190.
    [16] HU Tianyu, HUANG Yang, CHEN Junting, et al. 3D radio map reconstruction based on generative adversarial networks under constrained aircraft trajectories[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8250–8255. doi: 10.1109/TVT.2023.3239556.
    [17] LEVIE R, YAPAR Ç, KUTYNIOK G, et al. RadioUNet: Fast radio map estimation with convolutional neural networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 4001–4015. doi: 10.1109/TWC.2021.3054977.
    [18] LIN Yun, ZHAO Haojun, MA Xuefei, et al. Adversarial attacks in modulation recognition with convolutional neural networks[J]. IEEE Transactions on Reliability, 2021, 70(1): 389–401. doi: 10.1109/TR.2020.3032744.
    [19] MENG Lingchen, LI Hengduo, CHEN B C, et al. AdaViT: Adaptive vision transformers for efficient image recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12299–12308. doi: 10.1109/CVPR52688.2022.01199.
    [20] LI Hongyu, LI Jie, SHEN Feng, et al. SOC algorithm-based framework for spectrum occupancy completion[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(5): 1155–1166. doi: 10.1109/TCCN.2023.3269763.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  177
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-07-16
  • 网络出版日期:  2024-07-24
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回