高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水声通信及网络技术综述

杨健敏 王佳惠 乔钢 刘凇佐 马璐 何鹏

杨健敏, 王佳惠, 乔钢, 刘凇佐, 马璐, 何鹏. 水声通信及网络技术综述[J]. 电子与信息学报, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424
引用本文: 杨健敏, 王佳惠, 乔钢, 刘凇佐, 马璐, 何鹏. 水声通信及网络技术综述[J]. 电子与信息学报, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424
YANG Jianmin, WANG Jiahui, QIAO Gang, LIU Songzuo, MA Lu, HE Peng. Review of Underwater Acoustic Communication and Network Technology[J]. Journal of Electronics & Information Technology, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424
Citation: YANG Jianmin, WANG Jiahui, QIAO Gang, LIU Songzuo, MA Lu, HE Peng. Review of Underwater Acoustic Communication and Network Technology[J]. Journal of Electronics & Information Technology, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424

水声通信及网络技术综述

doi: 10.11999/JEIT230424
详细信息
    作者简介:

    杨健敏:男,副教授,研究方向为水声通信及组网

    王佳惠:女,硕士生,研究方向为水声通信及组网

    乔钢:男,教授,研究方向为水声通信及组网

    刘凇佐:男,教授,研究方向为水声通信及组网

    马璐:女,教授,研究方向为水声通信及组网

    通讯作者:

    乔钢 qiaogang@hrbeu.edu.cn

  • 中图分类号: TN929.3

Review of Underwater Acoustic Communication and Network Technology

  • 摘要: 水声通信(UAC)及网络技术在海洋环境监测、商业领域和军事领域等诸多方面发挥着重要作用,关心海洋、认识海洋、经略海洋离不开水声通信及网络技术的发展。该文对水声通信技术和水声通信网络(UACN)进行综述,首先回顾了水声通信技术和水声通信网络的发展,总结了水声信道的特点。然后,对于水声通信技术中的非相干调制技术、相干调制技术以及以应用需求为导向的新型通信技术进行陈述。随后,对于水声通信网络中数据链路层媒介接入控制协议、网络层的路由协议和跨层设计进行分类探讨。最后,对目前水声通信及网络技术的不足进行总结,并且对未来水声通信及网络技术的发展进行展望。
  • 图  1  广义水声通信网络

    图  2  3种协议体系对比

    图  3  水声通信技术的发展历程

    图  4  Seaweb网络的发展历程

    图  5  全双工水声通信

    图  6  仿生水声通信

    图  7  MAC协议分类

    图  8  TDMA协议分类

    图  9  VBF协议转发原理

    图  10  FBR协议转发原理

    图  11  DFR协议转发原理

    表  1  各种水下通信方式的优缺点

    通信方式 传输速率 带宽 时延 传输距离 通信信道的影响因素
    水下电磁波通信 较高 较高 较低 极短 介电常数,电导率等
    水下光通信 较高 较低 较短 介质的对光的吸收、散射等
    水声通信 较低 较高 较长 介质的压力、温度等
    下载: 导出CSV

    表  2  路由协议的特点与主要缺点

    序号 路由协议 特点 主要缺点
    1 VBF[87] (1)基于位置的路由方案
    (2)只有少数节点参与路由,其他节点处于空闲状态
    (3)允许特定节点转发以减少网络流量
    (1)在稀疏网络中,性能不佳
    (2)无法恢复无效区域
    (3)难以找到合适的路由半径阈值
    2 HH-VBF[89] (1)数据传输采用逐跳技术
    (2)在稀疏区域,比VBF性能更好
    (1)比VBF更多的数据包开销
    (2)端到端时延较高
    3 FBR[90] (1)节点只知道其位置和目的地的位置
    (2)通过保持不同的功率水平来降低能耗
    (3)吞吐量较高
    (1)该方案增加了开销
    (2)由于接收节点是固定的,网络受到更多限制
    4 DFR[91] (1)通过泛洪传输数据
    (2)比VBF更短的端到端时延和更少的通信开销
    (1)泛洪导致能耗高
    5 DBR[92] (1)节点路由决策仅依赖于深度
    (2)在密集网络中具有良好的性能
    (1)上层节点或因过度转发死亡
    (2)稀疏网络中性能不佳
    6 EEDBR (1)是DBR协议的扩展
    (2)综合考虑能量和深度选择最佳中继
    (1)无多路径通信机制
    (2)由于噪声和多径衰落,存在较高误码率
    7 D-DBR[93] (1)基于无定位接收节点的路由协议
    (2)DBR协议的扩展
    (3)数据包转发使用对角线距离的方法
    (1)没有从空洞区域恢复的方法
    (2)稀疏网络中,数据包送达率不佳
    下载: 导出CSV
  • [1] 许肖梅. 水声通信与水声网络的发展与应用[J]. 声学技术, 2009, 28(6): 811–816. doi: 10.3969/j.issn1000-3630.2009.06.026

    XU Xiaomei. Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28(6): 811–816. doi: 10.3969/j.issn1000-3630.2009.06.026
    [2] 石扬, 殷敬伟, 韩笑, 等. 潜航器水声通信导航定位一体化技术进展[J]. 哈尔滨工程大学学报, 2023, 44(1): 1–10. doi: 10.11990/jheu.202205064

    SHI Yang, YIN Jingwei, HAN Xiao, et al. Advances in integrated technology of underwater acoustic communication, navigation, and positioning of submarines[J]. Journal of Harbin Engineering University, 2023, 44(1): 1–10. doi: 10.11990/jheu.202205064
    [3] SHERMIN S A, DHONGDI S C. Review of underwater mobile sensor network for ocean phenomena monitoring[J]. Journal of Network and Computer Applications, 2022, 205: 103418. doi: 10.1016/j.jnca.2022.103418
    [4] 赵燕锋, 杨逍宇, 童峰, 等. 宽码率Polar码浅海水声通信实验研究[J]. 数字海洋与水下攻防, 2022, 5(5): 419–424. doi: 10.19838/j.issn.2096-5753.2022.05.005

    ZHAO Yanfeng, YANG Xiaoyu, TONG Feng, et al. Experimental study on shallow sea acoustic communication with multi-rate polar code[J]. Digital Ocean & Underwater Warfare, 2022, 5(5): 419–424. doi: 10.19838/j.issn.2096-5753.2022.05.005
    [5] SHOVON I I and SHIN S. Survey on multi-path routing protocols of underwater wireless sensor networks: Advancement and applications[J]. Electronics, 2022, 11(21): 467. doi: 10.3390/electronics11213467
    [6] LEI Zhufeng, LEI Xiaofang, WANG Na, et al. Present status and challenges of underwater acoustic target recognition technology: A review[J]. Frontiers in Physics, 2022, 10: 1044890. doi: 10.3389/fphy.2022.1044890
    [7] MARY D R K, KO E, YOON D J, et al. Energy optimization techniques in underwater internet of things: Issues, state-of-the-art, and future directions[J]. Water, 2022, 14(20): 3240. doi: 10.3390/w14203240
    [8] NIU Qixiang, ZHANG Qunfei, and SHI Wentao. Waveform design and signal processing method for integrated underwater detection and communication system[J]. IET Radar, Sonar & Navigation, 2023, 17(4): 617–627. doi: 10.1049/rsn2.12365.
    [9] 陈浩, 郭佳妮, 宋姗姗, 等. 基于随机接入的空天地海一体化网络性能分析[J]. 移动通信, 2022, 46(10): 35–40,70. doi: 10.3969/j.issn.1006-1010.20220904-0001

    CHEN Hao, GUO Jiani, SONG Shanshan, et al. Performance analysis of space-air-ground-sea integrated network based on random access[J]. Mobile Communications, 2022, 46(10): 35–40,70. doi: 10.3969/j.issn.1006-1010.20220904-0001
    [10] 江子龙, 王焱, 钟雪峰, 等. 基于NS-3的声电协同网络实现及路由性能分析[J]. 电子与信息学报, 2022, 44(6): 2014–2023. doi: 10.11999/JEIT211274

    JIANG Zilong, WANG Yan, ZHONG Xuefeng, et al. Implementation and routing performance analysis based on network simulator-3 for coordinate radio-acoustic network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2014–2023. doi: 10.11999/JEIT211274
    [11] MAHMUD M, ISLAM A, AHMED A, et al. Cross-medium photoacoustic communications: Challenges, and state of the art[J]. Sensors, 2022, 22(11): 4224. doi: 10.3390/s22114224
    [12] 朱凯凯. 水下无线通信技术的研究与展望[J]. 现代传输, 2022(6): 51–53. doi: 10.3969/j.issn.1673-5137.2022.06.008

    ZHU Kaikai. Research and prospect of underwater wireless communication technology[J]. Modern Transmission, 2022(6): 51–53. doi: 10.3969/j.issn.1673-5137.2022.06.008
    [13] 贾宁, 黄建纯. 水声通信技术综述[J]. 物理, 2014, 43(10): 650–657. doi: 10.7693/wl20141002

    JIA Ning and HUANG Jianchun. An overview of underwater acoustic communications[J]. Physics, 2014, 43(10): 650–657. doi: 10.7693/wl20141002
    [14] 刘千里, 吴晖. 水下无线传感器网络通信技术研究现状及趋势[J]. 舰船电子工程, 2022, 42(9): 20–24,28. doi: 10.3969/j.issn.1672-9730.2022.09.005

    LIU Qianli and WU Hui. Research status and trend of underwater wireless sensor network communication technology[J]. Ship Electronic Engineering, 2022, 42(9): 20–24,28. doi: 10.3969/j.issn.1672-9730.2022.09.005
    [15] 赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028

    ZHAO Rui, XU Jian, XIANG Xianbo, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028
    [16] 乔钢, 刘凇佐, 刘奇佩. 水声通信网络协议、仿真与试验综述[J]. 水下无人系统学报, 2017, 25(2): 151–160. doi: 10.11993/j.issn.2096-3920.2017.02.002

    QIAO Gang, LIU Songzuo, and LIU Qipei. Review of protocols, simulation and experimentation for underwater acoustic communication network[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 151–160. doi: 10.11993/j.issn.2096-3920.2017.02.002
    [17] 赵云江, 乔钢, 刘凇佐, 等. 带内全双工水声通信技术研究现状与展望[J]. 数字海洋与水下攻防, 2021, 4(3): 195–205. doi: 10.19838/j.issn.2096-5753.2021.03.006

    ZHAO Yunjiang, QIAO Gang, LIU Songzuo, et al. Research status and prospect of in-band full-duplex underwater acoustic communication technology[J]. Digital Ocean & Underwater Warfare, 2021, 4(3): 195–205. doi: 10.19838/j.issn.2096-5753.2021.03.006
    [18] 李淑秋, 李启虎, 张春华. 第六讲水下声学传感器网络的发展和应用[J]. 物理, 2006, 35(11): 945–952. doi: 10.3321/j.issn:0379-4148.2006.11.012

    LI Shuqiu, LI Qihu, and ZHANG Chunhua. Development and applications of underwater acoustic sensor network[J]. Physics, 2006, 35(11): 945–952. doi: 10.3321/j.issn:0379-4148.2006.11.012
    [19] 徐文, 鄢社锋, 季飞, 等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 中国科学:信息科学, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064

    XU Wen, YAN Shefeng, JI Fei, et al. Marine information gathering, transmission, processing, and fusion: Current status and future trends[J]. Scientia Sinica Informationis, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064
    [20] STOJANOVIC M, CATIPOVIC J, and PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 1993, 94(3): 1621–1631. doi: 10.1121/1.408135
    [21] QIAO Gang, SONG Qingjun, MA Lu, et al. Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications[J]. Signal Processing, 2020, 175: 107668. doi: 10.1016/j.sigpro.2020.107668
    [22] TAO Jun, WU Yanbo, HAN Xiao, et al. Sparse direct adaptive equalization for single-carrier MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1622–1631. doi: 10.1109/JOE.2019.2946679
    [23] SONG H C and HODGKISS W S. Efficient use of bandwidth for underwater acoustic communication[J]. The Journal of the Acoustical Society of America, 2013, 134(2): 905–908. doi: 10.1121/1.4812762
    [24] KIDA Y, DEGUCHI M, and SHIMURA T. Experimental result for a high-rate underwater acoustic communication in deep sea for a manned submersible SHINKAI6500[J]. The Journal of the Marine Acoustics Society of Japan, 2018, 45(4): 197–203. doi: 10.3135/jmasj.45.197
    [25] MOSCA F, MATTE G, and SHIMURA T. Low-frequency source for very long-range underwater communication[J]. The Journal of the Acoustical Society of America, 2013, 133(1): EL61–EL67. doi: 10.1121/1.4773199
    [26] SONG H C, CHO S, KANG T, et al. Long-range acoustic communication in deep water with a shallow source and horizontal towed array[J]. The Journal of the Acoustical Society of America, 2011, 129(4S): 2666. doi: 10.1121/1.3588923
    [27] KIDA Y, DEGUCHI M, and SHIMURA T. Experimental demonstration of spatial division multiplexing multiple-input/multiple-output underwater acoustic communication using a time-reversal method at the depth of the continental shelf: a consideration of optimization of signal length and number of transmission channels[J]. Japanese Journal of Applied Physics, 2023, 62(SJ): SJ1049. doi: 10.35848/1347-4065/acc6d9
    [28] 王彪, 方涛, 戴跃伟. 时间反转滤波器组多载波水声通信方法[J]. 声学学报, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004

    WANG Biao, FANG Tao, and DAI Yuewei. Method of time reversal filter bank multicarrier underwater acoustic communication[J]. Acta Acustica, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004
    [29] 邱逸凡, 李爽, 童峰. 一种浅海信道自适应调制水声通信方案[J]. 舰船科学技术, 2021, 43(19): 158–162. doi: 10.3404/j.issn.1672-7649.2021.10.032

    QIU Yifan, LI Shuang, and TONG Feng. A shallow sea channel adaptive modulation underwater acoustic communication scheme[J]. Ship Science and Technology, 2021, 43(19): 158–162. doi: 10.3404/j.issn.1672-7649.2021.10.032
    [30] 杨劭坚. 浙大自主研发水声通信机实现14公里高速率通信[EB/OL]. https://www.zju.edu.cn/2022/0304/c65659a2503328/pagem.htm, 2022.
    [31] 台玉朋, 王海斌, 杨晓霞, 等. 一种适用于深海远程水声通信的LT-Turbo均衡方法[J]. 中国科学: 物理学 力学 天文学, 2016, 46(9): 094313.

    TAI Yupeng, WANG Haibin, YANG Xiaoxia, et al. A novel LT-Turbo equalization for long-range deep-water acoustic communication[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(9): 094313.
    [32] 徐立军, 鄢社锋, 曾迪, 等. 全海深高速水声通信机设计与试验[J]. 信号处理, 2019, 35(9): 1505–1512. doi: 10.16798/j.issn.1003-0530.2019.09.007

    XU Lijun, YAN Shefeng, ZENG Di, et al. Design of the full-depth high rate underwater communication modem[J]. Journal of Signal Processing, 2019, 35(9): 1505–1512. doi: 10.16798/j.issn.1003-0530.2019.09.007
    [33] 朱敏, 武岩波. 水声通信技术进展[J]. 中国科学院院刊, 2019, 34(3): 289–296. doi: 10.16418/j.issn.1000-3045.2019.03.006

    ZHU Min and WU Yanbo. Development of underwater acoustic communication technology[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 289–296. doi: 10.16418/j.issn.1000-3045.2019.03.006
    [34] QIAO Gang, LIU Songzuo, ZHOU Feng, et al. Experimental study of long-range shallow water acoustic communication based on OFDM-modem[J]. Advanced Materials Research, 2012, 546–547: 1308–1313.
    [35] RICE J and GREEN D. Underwater acoustic communications and networks for the US navy's seaweb program[C]. The 2008 Second International Conference on Sensor Technologies and Applications, Cap Esterel, France, 2008: 715–722.
    [36] 聂卫东, 马玲, 张博, 等. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(5): 310–318. doi: 10.11993/j.issn.2096-3920.2017.04.002

    NIE Weidong, MA Ling, ZHANG Bo, et al. A brief analysis of united states unmanned underwater combat system[J]. Journal of Unmanned Undersea Systems, 2017, 25(5): 310–318. doi: 10.11993/j.issn.2096-3920.2017.04.002
    [37] NISHIKAWA T, MATSUZAWA T, OHTA K, et al. The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories[J]. Science, 2019, 365(6455): 808–813. doi: 10.1126/science.aax5618
    [38] 杨健敏. 基于定向收发的水声通信网络关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2018.

    YANG Jianmin. Research on key technology of underwater acoustic communication networks using directional transmission[D]. [Ph. D. dissertation], Harbin Engineering University, 2018.
    [39] GAO Jingjie, SHEN Xiaohong, ZHAO Ruiqin, et al. A double rate localization algorithm with one anchor for multi-hop underwater acoustic networks[J]. Sensors, 2017, 17(5): 984. doi: 10.3390/s17050984
    [40] STOJANOVIC M. Underwater acoustic communications[C]. Electro/International 1995, Boston, USA, 1995: 435–440.
    [41] 周密, 崔勇, 徐兴福, 等. 水声传感网MAC协议综述[J]. 计算机科学, 2011, 38(9): 5–10, 17. doi: 10.3969/j.issn.1002-137X.2011.09.002

    ZHOU Mi, CUI Yong, XU Xingfu, et al. Survey of the MAC protocols on underwater acoustic sensor network[J]. Computer Science, 2011, 38(9): 5–10, 17. doi: 10.3969/j.issn.1002-137X.2011.09.002
    [42] 胡安平, 高锐, 张建春. 水声信道传输特性研究[J]. 现代导航, 2013, 4(4): 278–284.

    HU Anping, GAO Rui, and ZHANG Jianchun. Study of underwater acoustic channel transmission[J]. Modern Navigation, 2013, 4(4): 278–284.
    [43] 尤立克R J, 洪申, 译. 水声原理[M]. 3版. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990.

    URICK R J, HONG Shen, translation. Principies of Underwater Sound[M]. 3rd ed. Harbin: Harbin Engineering University Press, 1990.
    [44] 汪德昭, 尚尔昌. 水声学[M]. 北京: 科学出版社, 1981.

    WANG Dezhao and SHANG Erchang. Hydroacoustics[M]. Beijing: Science Press, 1981.
    [45] 程华康, 王好贤. 基于卡尔曼滤波的时变水声信道估计[J]. 声学技术, 2022, 41(6): 833–837. doi: 10.16300/j.cnki.1000-3630.2022.06.007

    CHENG Huakang and WANG Haoxian. Time varying underwater acoustic channel estimation based on Kalman filter[J]. Technical Acoustics, 2022, 41(6): 833–837. doi: 10.16300/j.cnki.1000-3630.2022.06.007
    [46] 郭忠文, 罗汉江, 洪锋, 等. 水下无线传感器网络的研究进展[J]. 计算机研究与发展, 2010, 47(3): 377–389.

    GUO Zhongwen, LUO Hanjiang, HONG Feng, et al. Current progress and research issues in underwater sensor networks[J]. Journal of Computer Research and Development, 2010, 47(3): 377–389.
    [47] KHAN H, HASSAN S A, and JUNG H. On underwater wireless sensor networks routing protocols: A review[J]. IEEE Sensors Journal, 2020, 20(18): 10371–10386. doi: 10.1109/JSEN.2020.2994199
    [48] 高潭, 吕成财, 田川. 面向OFDM-MFSK水声通信的差错控制方法[J]. 系统工程与电子技术, 2022, 44(5): 1701–1708. doi: 10.12305/j.issn.1001-506X.2022.05.33

    GAO Tan, LYU Chengcai, and TIAN Chuan. Error control method for OFDM-MFSK underwater acoustic communication[J]. Systems Engineering and Electronics, 2022, 44(5): 1701–1708. doi: 10.12305/j.issn.1001-506X.2022.05.33
    [49] 韩笑. 浅海环境下单载波时域均衡水声通信关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2016.

    HAN Xiao. Research on time domain equalization of single carrier underwater acoustic communication in shallow water environment[D]. [Ph. D. dissertation], Harbin Engineering University, 2016.
    [50] STOJANOVIC M, CATIPOVIC J A, and PROAKIS J G. Phase-coherent digital communications for underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1): 100–111. doi: 10.1109/48.289455
    [51] 宋庆军. 基于稀疏贝叶斯学习的水声OFDM稀疏信道估计[D]. [博士论文], 哈尔滨工程大学, 2021.

    SONG Qingjun. Research on sparse Bayesian learning based sparse channel estimation in underwater acoustic OFDM communication[D]. [Ph. D. dissertation], Harbin Engineering University, 2021.
    [52] 张友文, 黄福朋, 兰华林, 等. 水声单载波调制技术综述[J]. 哈尔滨工程大学学报, 2019, 40(11): 1809–1815. doi: 10.11990/jheu.201809058

    ZHANG Youwen, HUANG Fupeng, LAN Hualin, et al. Review of underwater acoustic single-carrier modulation technology[J]. Journal of Harbin Engineering University, 2019, 40(11): 1809–1815. doi: 10.11990/jheu.201809058
    [53] 杨斌斌, 鄢社锋, 章绍晨, 等. 基于Kalman滤波的水声混合双向迭代信道均衡算法[J]. 电子与信息学报, 2022, 44(6): 1879–1886. doi: 10.11999/JEIT211343

    YANG Binbin, YAN Shefeng, ZHANG Shaochen, et al. Hybrid bi-directional turbo equalization for underwater acoustic communications based on Kalman filter[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1879–1886. doi: 10.11999/JEIT211343
    [54] 刘璐, 孙大军, 张友文. 宽线性L1范数RLS水声单载波判决反馈接收技术[J]. 哈尔滨工程大学学报, 2018, 39(3): 406–413. doi: 10.11990/jheu.201605072

    LIU Lu, SUN Dajun, and ZHANG Youwen. Adaptive DFE receiver with widely linear L1-norm penalized RLS algorithm in the single carrier underwater acoustic communication system[J]. Journal of Harbin Engineering University, 2018, 39(3): 406–413. doi: 10.11990/jheu.201605072
    [55] 陈芳炯, 刘明星, 付振华, 等. 水声通信中稀疏信道均衡算法优化[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 89–100. doi: 10.12141/j.issn.1000-565X.220040

    CHEN Fangjiong, LIU Mingxing, FU Zhenhua, et al. Optimization of sparse channel equalization algorithm in underwater acoustic communication[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(12): 89–100. doi: 10.12141/j.issn.1000-565X.220040
    [56] 王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状[J]. 信号处理, 2019, 35(9): 1441–1449. doi: 10.16798/j.issn.1003-0530.2019.09.001

    WANG Haibin, WANG Jun, TAI Yupeng, et al. Development and the state of the art in underwater acoustic communication[J]. Journal of Signal Processing, 2019, 35(9): 1441–1449. doi: 10.16798/j.issn.1003-0530.2019.09.001
    [57] PETRONI A, SCARANO G, CUSANI R, et al. On the effect of channel knowledge in underwater acoustic communications: Estimation, prediction and protocol[J]. Electronics, 2023, 12(7): 1552. doi: 10.3390/electronics12071552
    [58] 马璐, 刘凇佐, 乔钢, 等. 水声正交频分复用异步多用户接入方法[J]. 声学学报, 2017, 42(4): 436–444. doi: 10.15949/j.cnki.0371-0025.2017.04.007

    MA Lu, LIU Songzuo, QIAO Gang, et al. Asynchronous multiuser reception for underwater acoustic orthogonal frequency division multiplexing communications[J]. Acta Acustica, 2017, 42(4): 436–444. doi: 10.15949/j.cnki.0371-0025.2017.04.007
    [59] ZHANG Jie, YANG Guang, HAN Guangjie, et al. Space/frequency-division-based full-duplex data transmission method for multihop underwater acoustic communication networks[J]. IEEE Internet of Things Journal, 2023, 10(2): 1654–1665. doi: 10.1109/JIOT.2022.3209289
    [60] 叶子豪, 鄢社锋, 杨斌斌. 基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机[J]. 电子与信息学报, 2023, 45(7): 2519–2527. doi: 10.11999/JEIT220794

    YE Zihao, YAN Shefeng, and YANG Binbin. MIMO-OFDM underwater acoustic communication receiver based on intercarrier interference depth estimation[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2519–2527. doi: 10.11999/JEIT220794
    [61] 张玲玲, 黄建国, 韩晶, 等. 水声MIMO-OFDM通信中的空频迭代信道估计与均衡[J]. 西北工业大学学报, 2016, 34(2): 208–214. doi: 10.3969/j.issn.1000-2758.2016.02.004

    ZHANG Lingling, HUANG Jianguo, HAN Jing, et al. SFICEE (spatial-frequency iterative channel estimation and equalization) in underwater acoustic MIMO-OFDM communication[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 208–214. doi: 10.3969/j.issn.1000-2758.2016.02.004
    [62] 孙海信, 何崇林, 王俊峰, 等. 水下无线传感器网络抗恶意干扰技术应用及研究进展[J]. 水下无人系统学报, 2023, 31(1): 128–142. doi: 10.11993/j.issn.2096-3920.2022-0090

    SUN Haixin, HE Chonglin, WANG Junfeng, et al. Anti-malicious interference technology for underwater wireless sensor networks: Applications and recent advances[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 128–142. doi: 10.11993/j.issn.2096-3920.2022-0090
    [63] 周锋. 水声扩频通信关键技术研究[D]. [博士论文], 哈尔滨工程大学, 2012.

    ZHOU Feng. The study of the key technologies for UnderWater acoustic spread-spectrum communication[D]. [Ph. D. dissertation], Harbin Engineering University, 2012.
    [64] 周锋, 尹艳玲, 乔钢. 猝发混合扩频水声隐蔽通信技术[J]. 声学学报, 2017, 42(1): 37–47. doi: 10.15949/j.cnki.0371-0025.2017.01.005

    ZHOU Feng, YIN Yanling, and QIAO Gang. Burst mode spread spectrum technology for covert underwater acoustic communication[J]. Acta Acustica, 2017, 42(1): 37–47. doi: 10.15949/j.cnki.0371-0025.2017.01.005
    [65] 何成兵, 荆少晶, 花飞, 等. 循环移位扩频多用户水声通信[J]. 通信学报, 2017, 38(7): 11–17. doi: 10.11959/j.issn.1000-436x.2017141

    HE Chengbing, JIN Shaojing, HUA fei, et al. Multiuser cyclic shift keying spread spectrum underwater acoustic communication[J]. Journal on Communications, 2017, 38(7): 11–17. doi: 10.11959/j.issn.1000-436x.2017141
    [66] QIAO Gang, LIU Songzuo, SUN Zongxin, et al. Full-duplex, multi-user and parameter reconfigurable underwater acoustic communication modem[C]. 2013 OCEANS, San Diego, USA, 2013: 1–8.
    [67] 刘凇佐. 仿生隐蔽水声通信技术研究[D]. [博士论文], 哈尔滨工程大学, 2014.

    LIU Songzuo. Research on bionic covert underwater acoustic communication technology[D]. [Ph. D. dissertation], Harbin Engineering University, 2014. doi: 10.7666/d.D595367.
    [68] QU Fengzhong, YANG Liuqing, and YANG T C. High reliability direct-sequence spread spectrum for underwater acoustic communications[C]. OCEANS 2009, Biloxi, USA, 2009: 1–6. doi: 10.23919/OCEANS.2009.5422362.
    [69] LIU Songzuo, QIAO Gang, and ISMAIL A. Covert underwater acoustic communication using dolphin sounds[J]. The Journal of the Acoustical Society of America, 2013, 133(4): EL300–EL306. doi: 10.1121/1.4795219
    [70] 马天龙, 刘淞佐, 乔钢, 等. 基于频移键控的仿海豚哨声水声通信技术[J]. 电子与信息学报, 2022, 44(6): 2045–2053. doi: 10.11999/JEIT211322

    MA Tianlong, LIU Songzuo, QIAO Gang, et al. Bionic underwater acoustic communication by mimicking dolphin whistle based on frequency shift keying[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2045–2053. doi: 10.11999/JEIT211322
    [71] 宋忠长, 张宇, 魏翀, 等. 齿鲸生物声呐发射特性与波束调控研究[J]. 物理学报, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406

    SONG Zhongchang, ZHANG Yu, WEI Chong, et al. Biosonar emission characteristics and beam control of odontocetes[J]. Acta Physica Sinica, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
    [72] JIANG Jiajia, MIAO Yu, LI Yao, et al. Bionic covert anti-reverberation active sonar detection method based on imitating whale whistles[J]. Journal of Measurement Science and Instrumentation, 2022, 13(2): 127–137. doi: 10.3969/j.issn.1674-8042.2022.02.001
    [73] 青昕. 典型鲸豚捕猎行为中生物声呐工作机理研究[D]. [博士论文], 哈尔滨工程大学, 2021. doi: 10.27060/d.cnki.ghbcu.2021.000033.

    QING Xin. Research on the mechanisms of biosonar operation in the representative hunting behaviour of cetaceans[D]. [Ph. D. dissertation], Harbin Engineering University, 2021. doi: 10.27060/d.cnki.ghbcu.2021.000033.
    [74] 曾祥文, 陈国璐. 基于TDMA的水下MAC协议时隙参数计算研究[J]. 网络安全技术与应用, 2021(7): 45–47.

    ZENG Xiangwen and CHEN Guolu. Research on time slot parameter calculation of underwater MAC protocol based on TDMA[J]. Network Security Technology & Application, 2021(7): 45–47.
    [75] FENG Xiao, ESMAIEL H, WANG Junfeng, et al. Underwater acoustic communications based on OTFS[C]. The 2020 15th IEEE International Conference on Signal Processing, Beijing, China, 2020: 439–444.
    [76] 周锋, 夏凡, 乔钢, 等. 分布式水下组网MAC协议的设计与仿真[J]. 哈尔滨工程大学学报, 2021, 42(6): 872–878. doi: 10.11990/jheu.202007039

    ZHOU Feng, XIA Fan, QIAO Gang, et al. Design and simulation of the MAC protocol for distributed underwater networking[J]. Journal of Harbin Engineering University, 2021, 42(6): 872–878. doi: 10.11990/jheu.202007039
    [77] AKYILDIZ I F, POMPILI D, and MELODIA T. State of the art in protocol research for underwater acoustic sensor networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2007, 11(4): 11–22. doi: 10.1145/1347364.1347371
    [78] 吕曜辉, 杜鹏宇, 张宏滔, 等. 基于混沌正交组合序列的M元码分多址水声通信[J]. 声学技术, 2018, 37(1): 32–37. doi: 10.16300/j.cnki.1000-3630.2018.01.006

    LÜ Yaohui, DU Pengyu, ZHANG Hongtao, et al. M-ary code division multiple access underwater acoustic communication based on chaotic orthogonal combination sequence[J]. Technical Acoustics, 2018, 37(1): 32–37. doi: 10.16300/j.cnki.1000-3630.2018.01.006
    [79] GIBSON J H, XIE G G, XIAO Yang, et al. Analyzing the performance of multi-hop underwater acoustic sensor networks[C].OCEANS 2007, Aberdeen, UK, 2007: 1–6. doi: 10.1109/oceanse.2007.4302367.
    [80] 张阳, 肖星星, 普湛清, 等. 一种基于冲突解析的水声网络ALOHA协议[J]. 网络新媒体技术, 2018, 7(1): 40–46. doi: 10.3969/j.issn.2095-347X.2018.01.007

    ZHANG Yang, XIAO Xingxing, PU Zanqing, et al. A conflict resolution based ALOHA protocol for underwater acoustic networks[J]. Journal of Network New Media, 2018, 7(1): 40–46. doi: 10.3969/j.issn.2095-347X.2018.01.007
    [81] CHEN Keyu, MA Maode, CHEN En, et al. A survey on MAC protocols for underwater wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1433–1447. doi: 10.1109/surv.2014.013014.00032
    [82] PETRIOLI C, PETROCCIA R, and STOJANOVIC M. A comparative performance evaluation of MAC protocols for underwater sensor networks[C]. OCEANS 2008, Quebec City, Canada, 2008: 1–10.
    [83] 曲思潼, 吴朝慧, 叶旅洋, 等. 基于水声链路的UUV之间测距授时体制[J]. 通信技术, 2021, 54(6): 1356–1362. doi: 10.3969/j.issn.1002-0802.2021.06.011

    QU Sitong, WU Zhaohui, YE Lvyang, et al. UUV ranging and timing system based on underwater link[J]. Communications Technology, 2021, 54(6): 1356–1362. doi: 10.3969/j.issn.1002-0802.2021.06.011
    [84] 张阳, 张扬帆, 黄海宁. 延迟利用的多节点协同预约式水声网络MAC协议[J]. 声学技术, 2017, 36(4): 320–326. doi: 10.16300/j.cnki.1000-3630.2017.04.005

    ZHANG Yang, ZHANG Yangfan, and HUANG Haining. Propagation delay utilized MAC protocol in underwater acoustic networks[J]. Technical Acoustics, 2017, 36(4): 320–326. doi: 10.16300/j.cnki.1000-3630.2017.04.005
    [85] 白卫岗. 水声通信网络组网协议关键技术研究[D]. [博士论文], 西北工业大学, 2018.

    BAI Weigang. Study on the key techniques of underwater acoustic communication network protocols[D]. [Ph. D. dissertation], Northwestern Polytechnical University, 2018.
    [86] KHALID M, ULLAH Z, AHMAD N, et al. A survey of routing issues and associated protocols in underwater wireless sensor networks[J]. Journal of Sensors, 2017, 2017: 7539751. doi: 10.1155/2017/7539751
    [87] XIE Peng, CUI Junhong, and LAO Li. VBF: Vector-based forwarding protocol for underwater sensor networks[C]. The 5th International Conference on Research in Networking, Coimbra, 2006: 1216–1221.
    [88] 曹歌. 基于地理位置的水声传感器网络路由协议研究[D]. [硕士论文], 哈尔滨工程大学, 2021.

    CAO Ge. Research on the routing protocol of underwater acoustic sensor network based on geographic location[D]. [Master dissertation], Harbin Engineering University, 2021.
    [89] NICOLAOU N, SEE A, XIE Peng, et al. Improving the robustness of location-based routing for underwater sensor networks[C]. OCEANS 2007, Aberdeen, UK, 2007: 1–6. doi: 10.1109/OCEANSE.2007.4302470.
    [90] JORNET J M, STOJANOVIC M, and ZORZI M. Focused beam routing protocol for underwater acoustic networks[C]. The 3rd International Workshop on Underwater Networks, San Francisco, USA, 2008: 75–82.
    [91] HWANG D and KIM D. DFR: Directional flooding-based routing protocol for underwater sensor networks[C]. OCEANS 2008, Quebec, Canada, 2008: 1–7.
    [92] YAN Hai, SHI Z J, and CUI Junhong, DBR: Depth-based routing for underwater sensor networks[C]. The 7th International Conference on Research in Networking, Singapore, 2008: 72–86.
    [93] DIAO Boyu, XU Yongjun, AN Zhulin, et al. Improving both energy and time efficiency of depth-based routing for underwater sensor networks[J]. International Journal of Distributed Sensor Networks, 2015, 2015: 8. doi: 10.1155/2015/781932
    [94] 林灿. 基于强化学习的MAC协议与跨层设计研究[D]. [硕士论文], 厦门大学, 2020.

    LIN Can. Research on MAC protocol based on reinforcement learning and cross-layer design[D]. [Master dissertation], Xiamen University, 2020.
    [95] 尹艳玲. 水声通信网络多载波通信与跨层设计[D]. [博士论文], 哈尔滨工程大学, 2016.

    YIN Yanling. Underwater acoustic network multicarrier communication and cross-layer design[D]. [Ph. D. dissertation], Harbin Engineering University, 2016.
    [96] SUN Yao, GE Wei, LI Yingsong, et al. Cross-layer protocol based on directional reception in underwater acoustic wireless sensor networks[J]. Journal of Marine Science and Engineering, 2023, 11(3): 666. doi: 10.3390/jmse11030666
    [97] 许肖梅, 邹哲光. 水声网络中的跨层设计研究[J]. 声学技术, 2012, 31(3): 239–244. doi: 10.3969/j.issn.1000-3630.2012.03.002

    XU Xiaomei and ZOU Zheguang. Research on the cross-layer design of underwater acoustic networks[J]. Technical Acoustics, 2012, 31(3): 239–244. doi: 10.3969/j.issn.1000-3630.2012.03.002
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  353
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-11-06
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回