高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种星载在轨神经网络的容错设计方法

陈子洋 张萌 张吉良

陈子洋, 张萌, 张吉良. 一种星载在轨神经网络的容错设计方法[J]. 电子与信息学报, 2023, 45(9): 3234-3243. doi: 10.11999/JEIT230378
引用本文: 陈子洋, 张萌, 张吉良. 一种星载在轨神经网络的容错设计方法[J]. 电子与信息学报, 2023, 45(9): 3234-3243. doi: 10.11999/JEIT230378
CHEN Ziyang, ZHANG Meng, ZHANG Jiliang. A Fault-Tolerant Design of Spaceborne Onboard Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3234-3243. doi: 10.11999/JEIT230378
Citation: CHEN Ziyang, ZHANG Meng, ZHANG Jiliang. A Fault-Tolerant Design of Spaceborne Onboard Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3234-3243. doi: 10.11999/JEIT230378

一种星载在轨神经网络的容错设计方法

doi: 10.11999/JEIT230378
基金项目: 广东省重点领域研发项目(2021B1101270006),江苏省自然科学基金(BK20201145)
详细信息
    作者简介:

    陈子洋:男,高级工程师,研究方向为星载FPGA设计

    张萌:男,教授,研究方向为神经网络加速器设计

    张吉良:男,教授,研究方向为集成电路设计、集成电路硬件安全等

    通讯作者:

    张萌 zmeng@seu.edu.cn

  • 中图分类号: TN79

A Fault-Tolerant Design of Spaceborne Onboard Neural Network

Funds: The Key-Area Research and Development Program of Guangdong Province (2021B1101270006), The Natural Science Foundation of Jiangsu Province (BK20201145)
  • 摘要: 为了满足高可靠星载在轨实时舰船目标检测的应用需求,该文针对基于神经网络的合成孔径雷达(SAR)舰船检测提出了一种容错加固设计方法。该方法以轻量级网络MobilenetV2为检测模型框架,对模型在现场可编程逻辑阵列(FPGA)的加速处理进行实现,基于空间单粒子翻转(SEU)对网络的错误模型进行分析,将并行化加速设计思想与高可靠三模冗余(TMR)思想进行融合,优化设计了基于动态重配置的部分三模容错架构。该容错架构通过多个粗粒度计算单元进行多图像同时处理,多单元表决进行单粒子翻转自检与恢复,经实际图像回放测试,FPGA实现的帧率能有效满足在轨实时处理需求。通过模拟单粒子翻转进行容错性能测试,相对原型网络该容错设计方法在资源消耗仅增加不到20%的情况下,抗单粒子翻转检测精度提升了8%以上,相较传统容错设计方式更适合星载在轨应用。
  • 图  1  MobilenetV2网络框架

    图  2  Block结构

    图  3  RTL级检测网络架构

    图  4  CNN中单粒子翻转

    图  5  数据格式

    图  6  RTL级系统架构设计

    图  7  并行卷积设计

    图  8  系统级容错架构设计

    图  9  自检操作

    图  10  SAR舰船检测结果

    图  11  单粒子翻转注入平台

    图  12  特征图与权重翻转测试结果

    表  1  加固设计前后资源对比

    资源名称加固前加固后(TMR)加固后(本文)
    Slice LUTs270,897721,584302,240
    DSP188756611887
    BRAM(36k)96521421153
    下载: 导出CSV

    表  2  不同FPGA实现性能对比

    性能文献[16]本文
    FPS1642
    GOP/(s·W)3.6711.88
    下载: 导出CSV

    表  3  SAR舰船目标检测精度(%)

    文献[17]
    序号1序号2序号3本文
    检测精度74.2773.5677.6379.80
    下载: 导出CSV

    表  4  Block单元各层结果出错统计

    检测点Block1Block2Block3
    PW卷积1536746157516
    DW卷积156524343193
    PW卷积23711120849
    下载: 导出CSV
  • [1] LI Yangyang, PENG Cheng, CHEN Yanqiao, et al. A deep learning method for change detection in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5751–5763. doi: 10.1109/TGRS.2019.2901945
    [2] CHEN Fulong, LASAPONARA R, and MASINI N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring[J]. Journal of Cultural Heritage, 2017, 23: 5–11. doi: 10.1016/j.culher.2015.05.003
    [3] RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521
    [4] SUN Hongbo, SHIMADA M, and XU Feng. Recent advances in synthetic aperture radar remote sensing—systems, data processing, and applications[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2013–2016. doi: 10.1109/LGRS.2017.2747602
    [5] KECHAGIAS-STAMATIS and AOUF N. Automatic target recognition on synthetic aperture radar imagery: A survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 56–81. doi: 10.1109/MAES.2021.3049857
    [6] ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690
    [7] YUE Zhenyu, GAO Fei, XIONG Qingxu, et al. A novel attention fully convolutional network method for synthetic aperture radar image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4585–4598. doi: 10.1109/JSTARS.2020.3016064
    [8] 刘晨巍, 王沛尧, 朱岱寅. 基于FPGA的视频SAR高分辨率地面回放系统[J]. 现代雷达, 2021, 43(2): 40–46. doi: 10.16592/j.cnki.1004-7859.2021.02.006

    LIU Chenwei, WANG Peiyao, and ZHU Daiyin. High-resolution ground playback system for video SAR based on FPGA[J]. Modern Radar, 2021, 43(2): 40–46. doi: 10.16592/j.cnki.1004-7859.2021.02.006
    [9] 黄太. 基于FPGA的视频SAR实时成像处理技术研究[D]. [硕士论文], 电子科技大学, 2022.

    HUANG Tai. Research on real-time video SAR imaging processing technology based on FPGA[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
    [10] 李丹阳, 冯海兵, 聂孝亮, 等. 基于YOLO V5的噪声条件下SAR图像舰船目标检测[J]. 舰船电子对抗, 2022, 45(6): 68–72,99. doi: 10.16426/j.cnki.jcdzdk.2022.06.016

    LI Danyang, FENG Haibing, NIE Xiaoliang, et al. Ship target detection of SAR image based on YOLO V5 in noise condition[J]. Shipboard Electronic Countermeasure, 2022, 45(6): 68–72,99. doi: 10.16426/j.cnki.jcdzdk.2022.06.016
    [11] YANG Geng, LEI Jie, XIE Weiying, et al. Algorithm/hardware codesign for real-time on-satellite CNN-based ship detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–18. doi: 10.1109/TGRS.2022.3161499
    [12] WIEHLE S, MANDAPATI S, GUNZEL D, et al. Synthetic aperture radar image formation and processing on an MPSoC[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–14. doi: 10.1109/TGRS.2022.3167724
    [13] YU Jinxiang, YIN Tong, LI Shaoli, et al. Fast ship detection in optical remote sensing images based on sparse mobilenetv2 network[C]. The Thirteenth International Conference on Genetic and Evolutionary Computing, Qingdao, China, 2020: 262–269.
    [14] GUO Huadong, FU Wenxue, and LIU Guang. Development of earth observation satellites[M]. GUO Huadong, FU Wenxue, and LIU Guang. Scientific Satellite and Moon-Based Earth Observation for Global Change. Singapore: Springer, 2019: 31–49.
    [15] WANG Haibin, WANG Yangsheng, XIAO J H, et al. Impact of single-event upsets on convolutional neural networks in Xilinx Zynq FPGAs[J]. IEEE Transactions on Nuclear Science, 2021, 68(4): 394–401. doi: 10.1109/TNS.2021.3062014
    [16] XIE Xiaofei, ZHAO Guodong, WEI Wei, et al. MobileNetV2 accelerator for power and speed balanced embedded applications[C]. IEEE 2nd International Conference on Data Science and Computer Application. Dalian, China: IEEE, 2022: 134–139.
    [17] 李宗凌, 汪路元, 蒋帅, 等. 超轻量网络的SAR图像舰船目标在轨提取[J]. 遥感学报, 2021, 25(3): 765–775. doi: 10.11834/jrs.20210160

    LI Zongling, WANG Luyuan, JIANG Shuai, et al. On orbit extraction method of ship target in SAR images based on ultra-lightweight network[J]. National Remote Sensing Bulletin, 2021, 25(3): 765–775. doi: 10.11834/jrs.20210160
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  251
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-08-20
  • 录用日期:  2023-08-21
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回