高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于隧穿磁阻磁强计的软物理不可克隆函数设计

李翔宇 刘冬生 汪鹏君 李乐薇 张跃军

李翔宇, 刘冬生, 汪鹏君, 李乐薇, 张跃军. 基于隧穿磁阻磁强计的软物理不可克隆函数设计[J]. 电子与信息学报, 2023, 45(9): 3184-3192. doi: 10.11999/JEIT230365
引用本文: 李翔宇, 刘冬生, 汪鹏君, 李乐薇, 张跃军. 基于隧穿磁阻磁强计的软物理不可克隆函数设计[J]. 电子与信息学报, 2023, 45(9): 3184-3192. doi: 10.11999/JEIT230365
LI Xiangyu, LIU Dongsheng, WANG Pengjun, LI Lewei, ZHANG Yuejun. Design of Soft Physical Unclonable Functions Based on Tunneling Magnetic ResistanceMagnetometers[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3184-3192. doi: 10.11999/JEIT230365
Citation: LI Xiangyu, LIU Dongsheng, WANG Pengjun, LI Lewei, ZHANG Yuejun. Design of Soft Physical Unclonable Functions Based on Tunneling Magnetic ResistanceMagnetometers[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3184-3192. doi: 10.11999/JEIT230365

基于隧穿磁阻磁强计的软物理不可克隆函数设计

doi: 10.11999/JEIT230365
基金项目: 国家自然科学基金(62174121, 62234008, 62134002, 62001257),宁波市公益基金(2021S066)
详细信息
    作者简介:

    李翔宇:男,博士后,研究方向为传感器读出电路设计及实现、安全芯片设计

    刘冬生:男,教授,研究方向为信息安全技术

    汪鹏君:男,教授,研究方向为集成电路设计、信息安全等技术及其相关理论

    李乐薇:女,硕士生,研究方向为安全芯片理论和设计

    张跃军:男,教授,研究方向为低功耗、高信息密度集成电路理论和设计

    通讯作者:

    汪鹏君 wangpengjun@wzu.edu.cn

  • 中图分类号: TN601

Design of Soft Physical Unclonable Functions Based on Tunneling Magnetic ResistanceMagnetometers

Funds: The National Natural Science Foundation of China (62174121, 62234008, 62134002, 62001257), Ningbo Public Welfare Fund (2021S066)
  • 摘要: 隧穿磁阻(TMR)传感器相比于其他类型磁阻传感器功耗更低、灵敏度更高、可靠性更好,在军事和民用等领域有着广阔的应用前景。该文针对TMR传感器的微弱信号检测和安全防护等问题,提出一种高精度TMR传感器读取专用集成电路(ASIC)和提取传感器物理不可克隆函数(PUF)特性的设计方案。该方案通过设计前端低噪声仪表放大器和高精度模数转换器,并结合斩波技术和纹波抑制技术,实现高精度信号读取和模数转换;利用具备数字输出功能的TMR磁强计比较不同传感器零位偏差,采用多位随机平衡算法完成TMR磁强计的软PUF设计,可产生128 bit PUF响应。TMR传感器读取ASIC利用上海华虹0.35 μm CMOS工艺完成流片,并测试磁强计功能和TMR-PUF性能。实验结果表明,在5V电源电压下,TMR磁强计系统功耗约10 mW,噪底可达–140 dBV,3次谐波失真–107 dB;TMR-PUF的唯一性达到47.8%,稳定性为97.85%,与相关文献比较性能优异。
  • 图  1  TMR传感器读取电路

    图  2  斩波仪表放大器

    图  3  斩波前后的噪声仿真

    图  4  3阶Sigma-Delta调制器电路

    图  5  TMR传感器测试

    图  6  TMR磁强计系统测试

    图  7  TMR磁强计瞬态测试结果

    图  8  TMR磁强计非线性测试

    图  9  TMR磁强计PSD测试

    图  10  TMR-PUF唯一性测试

    图  11  不同温度下TMR-PUF可靠性测试

    图  12  不同电源激励下TMR-PUF可靠性测试

    图  13  TMR-PUF均匀性测试

    表  1  TMR传感器参数和接口电路的设计指标

    参数数值
    传感器灵敏度75 mV/Oe(5 V供电)
    传感器电阻值2 kΩ
    传感器非线性<0.2% FS
    传感器噪底1nT/Hz√@1 Hz
    读取电路电源电压5 V
    集成电路工艺0.35 μm CMOS
    闪烁噪声转角频率<5 mHz
    等效输入噪声(PSD)<15 nV/√Hz@1 Hz
    共模抑制比120 dB
    输入阻抗20 MΩ
    功耗<10 mW
    下载: 导出CSV
    算法1 随机平衡算法伪代码
     (1) int bit[place]
     (2) int lef[3]
     (3) int r[3]
     (4) double v[8]
     (5) i=0
     (6) do {lsum = v[(i+lef[0]) mod 8]+v[(i+lef[1]) mod 8]+v[(i + lef[2]) mod 8]
     (7) rsum = v[(i + r[0]) mod 8]+v[(i + r[1]) mod 8]+v[(i + r[2]) mod 8]
     (8) if lsum > rsum
     (9) then bits[palce] = 1
     (10) else bits[place] = 0
     (11) place = place +1}
     (12) while(i<8)
     (13) return
    下载: 导出CSV

    表  2  与其他传感器PUF的比较(%)

    传感器类型PUF响应机理唯一性可靠性
    加速度传感器[11]利用MEMS工艺偏差产生响应92.97
    MEMS陀螺[14]利用陀螺仪敏感电容偏差产生响应42.6492.17
    压电传感器[15]利用压电传感器阻抗偏差产生响应96.07
    TMR传感器利用TMR磁强计零位偏差产生响应47.897.85
    下载: 导出CSV
  • [1] LI Jiaxian, LIU Hao, and BI Tianshu. Tunnel magnetoresistance-based noncontact current sensing and measurement method[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9503609. doi: 10.1109/TIM.2022.3152240
    [2] 韩秀峰, 刘厚方, 张佳, 等. 新型磁性隧道结材料及其隧穿磁电阻效应[J]. 中国材料进展, 2013, 32(6): 339–353. doi: 10.7502/j.issn.1674-3962.2013.06.02

    HAN Xiufeng, LIU Houfang, ZHANG Jia, et al. A typical magnetic tunnel junction material and effects of tunnel magneto-resistance[J]. Materials China, 2013, 32(6): 339–353. doi: 10.7502/j.issn.1674-3962.2013.06.02
    [3] CHINENKOV M, DJUZHEV N, BESPALOV V, et al. Magnetoresistive sensor with high sensitivity: Self-aligned magnetic structures[C]. 2017 IEEE International Magnetics Conference, Dublin, Ireland, 2017.
    [4] 张朝阳, 虞伟乔, 陆鹏飞. 基于远场等效磁矩的潜艇磁防护技术[J]. 舰船科学技术, 2015, 37(2): 97–100. doi: 10.3404/j.issn.1672-7649.2015.02.020

    ZHANG Zhaoyang, YU Weiqiao, and LU Pengfei. Research on the submarine's magnetic defense technology based on the far field equivalent magnetic moment[J]. Ship Science and Technology, 2015, 37(2): 97–100. doi: 10.3404/j.issn.1672-7649.2015.02.020
    [5] YANG Huiwen, WENG Ling, WANG Bowen, et al. Design and characterization of high-sensitivity magnetostrictive tactile sensor array[J]. IEEE Sensors Journal, 2022, 22(5): 4004–4013. doi: 10.1109/JSEN.2022.3145822
    [6] CAI Hao, GUO Yanan, LIU Bo, et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(4): 1519–1531. doi: 10.1109/TCSI.2022.3140769
    [7] EBRAHIMABADI M, YOUNIS M, and KARIMI N. A PUF-based modeling-attack resilient authentication protocol for IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(5): 3684–3703. doi: 10.1109/JIOT.2021.3098496
    [8] LEWIS J A. Economic impact of cybercrime[EB/OL]. https://www.csis.org/analysis/economic-impact-cybercrime, 2018.
    [9] 龚越, 叶靖, 胡瑜, 等. 内建自调整的仲裁器物理不可克隆函数[J]. 计算机辅助设计与图形学学报, 2017, 29(9): 1734–1739. doi: 10.3969/j.issn.1003-9775.2017.09.018

    GONG Yue, YE Jing, HU Yu, et al. Built-in self adjustable arbiter PUF[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(9): 1734–1739. doi: 10.3969/j.issn.1003-9775.2017.09.018
    [10] 孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究[J]. 电子与信息学报, 2021, 43(1): 234–241. doi: 10.11999/JEIT191013

    SUN Ziwen and YE Qiao. Study on the physical unclonable function of the reliable information entropy extracted by the frequency characteristic of oscillating ring[J]. Journal of Electronics &Information Technology, 2021, 43(1): 234–241. doi: 10.11999/JEIT191013
    [11] LI Gang, WANG Pengjun, MA Xuejiao, et al. A 215-F2 bistable physically unclonable function with an ACF of <0.005 and a native bit instability of 2.05% in 65-nm CMOS process[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2290–2299. doi: 10.1109/TVLSI.2020.3014892
    [12] GOLANBARI M S, KIAMEHR S, BISHNOI R, et al. Reliable memory PUF design for low-power applications[C]. The 19th International Symposium on Quality Electronic Design, Santa Clara, USA, 2018: 207–213.
    [13] 张培勇, 袁晓东, 王雪洁, 等. 基于D触发器的物理不可克隆函数[J]. 浙江大学学报:理学版, 2019, 46(1): 32–38. doi: 10.3785/j.issn.1008-9497.2019.01.005

    ZHANG Peiyong, YUAN Xiaodong, WANG Xuejie, et al. D flip-flop based physical unclonable functions[J]. Journal of Zhejiang University:Science Edition, 2019, 46(1): 32–38. doi: 10.3785/j.issn.1008-9497.2019.01.005
    [14] LEE J W, LIM D, GASSEND B, et al. A technique to build a secret key in integrated circuits for identification and authentication applications[C]. 2004 Symposium on VLSI Circuits. Digest of Technical Papers, Honolulu, USA, 2004: 176–179.
    [15] WILLERS O, HUTH C, GUAJARDO J, et al. MEMS gyroscopes as physical unclonable functions[C]. The 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 591–602.
    [16] LABRADO C and THAPLIYAL H. Design of a piezoelectric-based physically unclonable function for IoT security[J]. IEEE Internet of Things Journal, 2019, 6(2): 2770–2777. doi: 10.1109/JIOT.2018.2874626
    [17] 吴少兵, 陈实, 李海, 等. TMR与GMR传感器1/f噪声的研究进展[J]. 物理学报, 2012, 61(9): 550–559. doi: 10.7498/aps.61.097504

    WU Shaobing, CHEN Shi, LI Hai, et al. Researching progress of the 1/f noise in TMR and GMR sensors[J]. Acta Physica Sinica, 2012, 61(9): 550–559. doi: 10.7498/aps.61.097504
    [18] KUSUDA Y. Auto correction feedback for ripple suppression in a chopper amplifier[J]. IEEE Journal of Solid-State Circuits, 2010, 45(8): 1436–1445. doi: 10.1109/JSSC.2010.2048142
    [19] KUMAR R S A and KRISHNAPURA N. Multi-channel analog-to-digital conversion techniques using a continuous-time delta-sigma modulator without reset[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(11): 3693–3703. doi: 10.1109/TCSI.2020.3013691
    [20] LIM D, LEE J W, GASSEND B, et al. Extracting secret keys from integrated circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2005, 13(10): 1200–1205. doi: 10.1109/TVLSI.2005.859470
    [21] 张跃军, 汪鹏君, 李刚, 等. 基于信号传输理论的Glitch物理不可克隆函数电路设计[J]. 电子与信息学报, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312

    ZHANG Yuejun, WANG Pengjun, LI Gang, et al. Design of glitch physical unclonable functions circuit based on signal transmission theory[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312
    [22] SU Y, HOLLEMAN J, and OTIS B. A 1.6pJ/bit 96% stable chip-ID generating circuit using process variations[C]. 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, USA, 2007: 406–411.
    [23] ZHANG Jiliang, SHEN Chaoqun, GUO Zhiyang, et al. CT PUF: Configurable tristate PUF against machine learning attacks for IoT security[J]. IEEE Internet of Things Journal, 2022, 9(16): 14452–14462. doi: 10.1109/JIOT.2021.3090475
    [24] QIU Pengfei, LYU Yongqiang, ZHANG Jiliang, et al. Physical unclonable functions-based linear encryption against code reuse attacks[C]. The 53rd Annual Design Automation Conference, Austin, USA, 2016: 75.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  308
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-15
  • 网络出版日期:  2023-08-17
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回