[1] |
RIVEST R L, SHAMIR A, and ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120–126. doi: 10.1145/359340.359342
|
[2] |
GENTRY C. Fully homomorphic encryption using ideal lattices[C]. The Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–178.
|
[3] |
FAN Junfeng and VERCAUTEREN F. Somewhat practical fully homomorphic encryption[R]. Paper 2012/144, 2012.
|
[4] |
MARCOLLA C, SUCASAS V, MANZANO M, et al. Survey on fully homomorphic encryption, theory, and applications[J]. Proceedings of the IEEE, 2022, 110(10): 1572–1609. doi: 10.1109/JPROC.2022.3205665
|
[5] |
KIM S, KIM J, KIM M J, et al. BTS: An accelerator for bootstrappable fully homomorphic encryption[C]. The 49th Annual International Symposium on Computer Architecture, New York, USA, 2022: 711–725.
|
[6] |
NEJATOLLAHI H, GUPTA S, IMANI M, et al. CryptoPIM: In-memory acceleration for lattice-based cryptographic hardware[C]. 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2020: 1–6.
|
[7] |
SAMARDZIC N, FELDMANN A, KRASTEV A, et al. F1: A fast and programmable accelerator for fully homomorphic encryption[C/OL]. MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, Greece, 2021: 238–252.
|
[8] |
AHN J, HONG S, YOO S, et al. A scalable processing-in-memory accelerator for parallel graph processing[C]. The 42nd Annual International Symposium on Computer Architecture, Portland, USA, 2015: 105–117.
|
[9] |
AGA S, JELOKA S, SUBRAMANIYAN A, et al. Compute caches[C]. 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, USA, 2017: 481–492.
|
[10] |
CAO Zhengjun, WEI Ruizhong, and LIN Xiaodong. A fast modular reduction method[R]. Paper 2014/040, 2014.
|
[11] |
CHEN Paiyu, PENG Xiaochen, and YU Shimeng. NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures[C]. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017: 6.1. 1–6.1. 4.
|
[12] |
HE Yuquan, QU Songyun, LIN Gangliang, et al. Processing-in-SRAM acceleration for ultra-low power visual 3D perception[C]. The 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 295–300.
|
[13] |
LI Dai, PAKALA A, and YANG Kaiyuan. MeNTT: A compact and efficient processing-in-memory number theoretic transform (NTT) accelerator[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(5): 579–588. doi: 10.1109/TVLSI.2022.3151321
|
[14] |
REIS D, TAKESHITA J, JUNG T, et al. Computing-in-memory for performance and energy-efficient homomorphic encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2300–2313. doi: 10.1109/TVLSI.2020.3017595
|
[15] |
GUPTA S, CAMMAROTA R, and ROSING T Š. MemFHE: End-to-end computing with fully homomorphic encryption in memory[J]. ACM Transactions on Embedded Computing Systems, 2022, 30(5): 579−588.
|
[16] |
Sarojaerabelli. py-FHE - A python library for fully homomorphic encryption[EB/OL]. https://github.com/sarojaerabelli/py-fhe, 2022.
|
[17] |
ALBRECHT M, CHASE M, CHEN Hao, et al. Homomorphic encryption standard[M]. LAUTER K, DAI Wei, and LAINE K. Protecting Privacy Through Homomorphic Encryption. Cham: Springer, 2021: 31–62.
|
[18] |
AKYEL K C, CHARLES H P, MOTTIN J, et al. DRC2: Dynamically reconfigurable computing circuit based on memory architecture[C]. 2016 IEEE International Conference on Rebooting Computing (ICRC), San Diego, USA, 2016: 1–8.
|
[19] |
HASAN M, SAHA U K, HOSSAIN M S, et al. Low power design of a two bit mangitude comparator for high speed operation[C]. 2019 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2019: 1–4.
|
[20] |
TALATI N, GUPTA S, MANE P, et al. Logic design within memristive memories using memristor-aided loGIC (MAGIC)[J]. IEEE Transactions on Nanotechnology, 2016, 15(4): 635–650. doi: 10.1109/TNANO.2016.2570248
|
[21] |
YANG Y, JEONG H, SONG S C, et al. Single bit-line 7T SRAM cell for near-threshold voltage operation with enhanced performance and energy in 14 nm FinFET technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(7): 1023–1032. doi: 10.1109/TCSI.2016.2556118
|