高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压控自旋轨道矩磁性随机存储器的存内计算全加器设计

刘晓 刘迪军 张有光 罗力川 康旺

刘晓, 刘迪军, 张有光, 罗力川, 康旺. 基于压控自旋轨道矩磁性随机存储器的存内计算全加器设计[J]. 电子与信息学报, 2023, 45(9): 3228-3233. doi: 10.11999/JEIT230306
引用本文: 刘晓, 刘迪军, 张有光, 罗力川, 康旺. 基于压控自旋轨道矩磁性随机存储器的存内计算全加器设计[J]. 电子与信息学报, 2023, 45(9): 3228-3233. doi: 10.11999/JEIT230306
LIU Xiao, LIU Dijun, ZHANG Youguang, LUO Lichuan, KANG Wang. Design of an Process In-Memory Full Adder Based on Voltage-Controlled Spin Orbit Torque Magnetic Random Access Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3228-3233. doi: 10.11999/JEIT230306
Citation: LIU Xiao, LIU Dijun, ZHANG Youguang, LUO Lichuan, KANG Wang. Design of an Process In-Memory Full Adder Based on Voltage-Controlled Spin Orbit Torque Magnetic Random Access Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3228-3233. doi: 10.11999/JEIT230306

基于压控自旋轨道矩磁性随机存储器的存内计算全加器设计

doi: 10.11999/JEIT230306
详细信息
    作者简介:

    刘晓:男,博士生,研究方向为新型非易失存储器件、新型计算体系架构等

    刘迪军:男,高级工程师,研究方向为电子科学与技术、超大规模集成电路设计等

    张有光:男,教授,研究方向为数模混合集成电路设计、SOC片上系统和通信网理论与技术等

    罗力川:男,博士生,研究方向为存算一体新型计算体系架构、神经网络加速器等

    康旺:男,副研究员,研究方向为基于自旋电子的智能存储与计算芯片、新型计算体系架构等

    通讯作者:

    康旺 wang.kang@buaa.edu.cn

  • 中图分类号: TN43

Design of an Process In-Memory Full Adder Based on Voltage-Controlled Spin Orbit Torque Magnetic Random Access Memory

  • 摘要: 随着互补金属氧化物半导体技术的特征尺寸的不断缩小,其面临的静态功耗问题缩越来越突出。自旋磁随机存储器(MRAM)由于其非易失性、高速读写能力、高集成密度和CMOS兼容性等良好特性,受到了学术界的广泛关注和研究。该文采用电压调控的自旋轨道矩随机存储器设计了一个存内计算可重构逻辑阵列,能够实现全部布尔逻辑功能和高度并行计算。在此基础上设计了存内计算全加器并在40 nm工艺下进行了仿真验证。结果表明,与当前先进研究相比,该文提出的全加器具有更高的并行度,能够实现更快的计算速度(约1.11 ns/bit)和更低的计算功耗(约5.07 fJ/bit)。
  • 图  1  VC-SOT MTJ器件结构

    图  2  基于单个VC-SOT MTJ器件的3个基本的布尔逻辑函数

    图  3  存内计算可重构逻辑阵列

    图  4  VC-SOT MTJ阵列结构中的“XOR”逻辑功能

    图  5  VC-FA数据处理流程

    图  6  并行存算一体阵列结构

    图  7  基于VC-SOT MTJ的并行全加法器时序仿真波形

    表  1  VC-SOT MTJ模型的参数和变量

    参数描述默认值
    tOX (nm)氧化层高度1.50~2.50
    tFL (nm)自由层厚度1.10
    l,w,d (nm)重金属尺寸100, 100, 3
    α磁阻尼常数0.02
    TMR(0)零偏置电压下的隧穿磁电阻比率100%
    下载: 导出CSV

    表  2  全加器性能对比

    文献[18](1个阵列)VC-FA(1个阵列)文献[18](3个阵列)VC-FA(3个阵列)
    延时(ns/bit)8.333.334.331.11
    功耗(fJ/bit)10.475.0710.475.07
    下载: 导出CSV
  • [1] KIM N S, AUSTIN T, BAAUW D, et al. Leakage current: Moore's law meets static power[J]. Computer, 2003, 36(12): 68–75. doi: 10.1109/MC.2003.1250885
    [2] MUSELLO A, GARZÓN E, LANUZZA M, et al. XNOR-bitcount operation exploiting computing-in-memory with STT-MRAMs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(3): 1259–1263.
    [3] WONG H S P and SALAHUDDIN S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3): 191–194. doi: 10.1038/nnano.2015.29
    [4] KANG Wang, ZHANG Yue, WANG Zhaohao, et al. Spintronics: Emerging ultra-low-power circuits and systems beyond MOS technology[J]. ACM Journal on Emerging Technologies in Computing Systems, 2015, 12(2): 16. doi: 10.1145/2663351
    [5] SHARMA V, KIM H, and KIM T T H. A 64 Kb reconfigurable full-precision digital ReRAM-based compute-in-memory for artificial intelligence applications[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(8): 3284–3296. doi: 10.1109/TCSI.2022.3168053
    [6] YOON J H, CHANG Muya, KHWA W S, et al. A 40-nm, 64-Kb, 56.67 TOPS/W voltage-sensing computing-in-memory/digital RRAM macro supporting iterative write with verification and online read-disturb detection[J]. IEEE Journal of Solid-State Circuits, 2022, 57(1): 68–79. doi: 10.1109/JSSC.2021.3101209
    [7] GUO Zongxia, YIN Jialiang, BAI Yue, et al. Spintronics for energy- efficient computing: An overview and outlook[J]. Proceedings of the IEEE, 2021, 109(8): 1398–1417. doi: 10.1109/JPROC.2021.3084997
    [8] SAFRANSKI C, HU Guohan, SUN J Z, et al. Reliable sub-nanosecond switching in magnetic tunnel junctions for MRAM applications[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 7180–7183. doi: 10.1109/TED.2022.3214168
    [9] DONG Xiangyu, WU Xiaoxia, SUN Guangyu, et al. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement[C]. The 45th Annual Design Automation Conference, Anaheim, USA, 2008.
    [10] ZAND R, ROOHI A, SALEHI S, et al. Scalable adaptive spintronic reconfigurable logic using area-matched MTJ design[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2016, 63(7): 678–682. doi: 10.1109/TCSII.2016.2532099
    [11] FONG Xuanyao, KIM Y, YOGENDRA K, et al. Spin-transfer torque devices for logic and memory: Prospects and perspectives[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(1): 1–22. doi: 10.1109/TCAD.2015.2481793
    [12] ROOHI A, ZAND R, and DEMARA R F. A tunable majority gate-based full adder using current-induced domain wall nanomagnets[J]. IEEE Transactions on Magnetics, 2016, 52(8): 1–7. doi: 10.1109/TMAG.2016.2540600
    [13] RAJAEI R. Highly reliable and low-power magnetic full-adder designs for nanoscale technologies[J]. Microelectronics Reliability, 2017, 73: 129–135. doi: 10.1016/j.microrel.2017.04.033
    [14] DENG Erya, YUE Zue, KLEIN J O, et al. Low power magnetic full-adder based on spin transfer torque MRAM[J]. IEEE Transactions on Magnetics, 2013, 49(9): 4982–4987. doi: 10.1109/TMAG.2013.2245911
    [15] ZHONG Xingwei, CAI Kui, and SONG Guanghui. Union bound analysis for Spin-Torque Transfer Magnetic Random Access Memory (STT-MRAM) with channel quantization[J]. IEEE Transactions on Magnetics, 2022, 58(2): 3400105. doi: 10.1109/TMAG.2021.3084210
    [16] SHAO Qiming, LI Peng, LIU Luqiao, et al. Roadmap of spin-orbit torques[J]. IEEE Transactions on Magnetics, 2021, 57(7): 800439. doi: 10.1109/TMAG.2021.3078583
    [17] PENG Shouzhong, LU Jiaqi, LI Weixiang, et al. Field-free switching of perpendicular magnetization through voltage-gated spin-orbit torque[C]. 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019.
    [18] ZHANG He, KANG Wang, WU Bi, et al. Spintronic processing unit within voltage-gated spin hall effect MRAMs[J]. IEEE Transactions on Nanotechnology, 2019, 18: 473–483. doi: 10.1109/TNANO.2019.2914009
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  219
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-08-16
  • 录用日期:  2023-08-17
  • 网络出版日期:  2023-08-22
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回