Loading [MathJax]/jax/output/HTML-CSS/jax.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迹函数的negabent函数构造

赵海霞 李文宇 韦永壮

赵海霞, 李文宇, 韦永壮. 基于迹函数的negabent函数构造[J]. 电子与信息学报, 2024, 46(1): 335-343. doi: 10.11999/JEIT230001
引用本文: 赵海霞, 李文宇, 韦永壮. 基于迹函数的negabent函数构造[J]. 电子与信息学报, 2024, 46(1): 335-343. doi: 10.11999/JEIT230001
Ke Jin-Song, Dong Guo-Zhong, Wang Fang-Hui. INVESTIGATION OF THE PHASE PERFORMANCE IN DUAL-TR TUBE[J]. Journal of Electronics & Information Technology, 1982, 4(2): 111-119.
Citation: ZHAO Haixia, LI Wenyu, WEI Yongzhuang. Construction of Negabent Function Based on Trace Function over Finite Field[J]. Journal of Electronics & Information Technology, 2024, 46(1): 335-343. doi: 10.11999/JEIT230001

基于迹函数的negabent函数构造

doi: 10.11999/JEIT230001
基金项目: 国家自然科学基金(62162016),广西自然科学基金(2019GXNSFGA245004)
详细信息
    作者简介:

    赵海霞:女,副教授,研究方向为密码函数、对称密码算法设计与分析

    李文宇:男,硕士生,研究方向为密码函数、对称密码分析

    韦永壮:男,教授,研究方向为密码函数,对称密码算法设计与分析,侧信道攻击与防御科技

    通讯作者:

    韦永壮 walker_wyz@guet.edu.cn

  • 中图分类号: TN918.2

Construction of Negabent Function Based on Trace Function over Finite Field

Funds: The National Natural Science Foundation of China (62162016), Guangxi Natural Science Foundation (2019GXNSFGA245004)
  • 摘要: Negabent函数是一种具有最优自相关性、较高非线性度的布尔函数,在密码学、编码理论及组合设计中都有着广泛的应用。该文基于有限域上的迹函数,将其与置换多项式相结合,提出两种构造negabent函数的方法。所构造的两类negabent函数均具备Trk1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(dx)形式:构造方法1通过调整λ, u, v, m中的3个参数来获得negabent函数,特别地,当λ≠1时,能得到(2n12)(2n1)(2n4)个negabent函数;构造方法2通过调整λ, u, v, m, d中的4个参数来获得negabent函数,特别地,当λ≠1时,至少能够得到2n1[(2n12)(2n13)+2n14]个negabent函数。
  • 在现代的对称密码体系中,布尔函数是不可替代的重要角色,其抵御攻击的能力决定着密码系统的安全性,故对安全性能良好的布尔函数的构造显得极其重要。非线性度是布尔函数的最重要的性质之一,具有高非线性度的布尔函数能够有效抵御最佳仿射攻击。具有最高非线性度的布尔函数被称为bent函数[1],这类函数满足n阶扩散准则且其Walsh-Hadamard谱值的绝对值都是相等的,故bent函数是一类密码学性质较好的布尔函数。然而bent函数也有不足之处,例如bent函数不平衡,且其变元个数只能是偶数。Riera等人[2]提出了与Walsh-Hadamard变换相类似的Nega-Hadamard变换,并借鉴bent函数的谱值定义,将在任意点处Nega-Hadamard谱值的绝对值都为1的函数称为negabent函数。文献[3,4]指出negabent函数具有最优的自相关性,存在平衡的negabent函数,且其变元个数可为偶数也可为奇数。与bent函数一样,negabent函数在密码学、编码理论和组合设计中都有广泛的应用,故negabent函数的性质和构造成为布尔函数研究领域的一个重点问题。

    目前,国内外的学者对negabent函数进行了若干的研究。Parker等人[5]讨论了既是bent又是negabent函数的构造和分类问题。Stănică等人[6]描述了nega-Hadamard变换的详细理论,研究了negabent函数级联后的结果,并刻画了M-M类中的bent-negabent函数所具备的特征。Stanica等人[7]继续证明了n元negabent函数代数次数的上界为n/2,提出了一种利用完全映射多项式构造bent-negabent函数的方法。Su等人[8]给出了函数是negabent的充要条件,基于该充要条件证明了negabent函数至多有4种nega-谱值,并提供了一种构造偶变元bent-negabent的方法。Mandal等人[9]对M-M类中的bent-negabent函数的存在性问题进行了研究。Sarkar[10]首次给出了通过迹函数的形式表示negabent函数,刻画了一类negabent 2次单项式函数,并给出了在M-M类中bent-negabent函数的充要条件。Zhou等人[11]利用迹函数给出了negabent函数的等价定义,分别构造了2次和3次的negabent单项式函数族。Wu等人[12]利用了2次置换的复合逆和3次置换的复合逆构造了一类新的negabent函数。Jiang等人[13]利用完全置换多项式给出了一类2次bent-negabent函数的充要条件,利用布尔函数和向量布尔函数组合的方法,计算了广义间接和的nega-Hadamard变换。Guo等人[14]分别通过间接与直接的方法对bent-negabent函数进行构造,并研究了多输出布尔函数的nega-Hadamard谱值。文献[15]利用基于迹函数定义的Kerdock码构造了2次bent–negabent函数族。迹函数是有限域上的一类线性函数,利用迹函数不仅可以更好地描述出negabent函数的性质,而且较其他方法而言,利用迹函数构造negabent函数也更加简便。

    鉴于迹函数在刻画和构造negabent函数方面的优势,本文使用有限域上的迹函数与置换多项式相结合的方法构造了两类negabent函数,并完成了对这两类negabent函数的计数。所构造的第1类negabent函数具备f(x)=Trk1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(ux)的形式,其中(u,v,m)F2n×F2n×F2n, n=2k, λF2k,通过调整λ, u, v, m中的3个参数使其满足negabent函数的谱值特征,并计算出了这类negabent函数的数量。所构造的第2类negabent函数的形式为f(x)=Trn1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(dx),其中n=2k, λF2k,(u,v,m,d)F2n×F2n×F2n×F2n,通过调整λ, u, v, m, d中的4个参数,使其满足negabent函数的谱值特征,并计算出了这类negabent函数的数量。研究结果表明,利用该方法可以获得大量形式简洁的negabent函数。

    本文内容的安排如下:第2节介绍了布尔函数及有限域上的迹函数的基本知识;第3节给出了利用迹函数构造negabent函数的方法,并解决了所构造的negabent函数的计数问题;第4节总结。

    本文用F2表示只有两个元素0和1的有限域,F2上定义了加法和乘法两种2元运算,Fn2表示2元域上的n维向量空间。n元布尔函数是Fn2F2上的映射[16],用Bn表示所有的n元布尔函数构成的集合。

    定义1[16] 设f(x)Bn, x=(x1,x2,,xn)Fn2,称多项式

    f(x)=eFn2αe(ni=1xiei) (1)

    f(x)的代数正规型(Algebraic Normal Form, ANF),这里的αeF2, e=(e1,e2,,en)Fn2, f(x)的代数次数为deg(f)=max{wt(e)|αe0,eFn2},其中wt(e)e的汉明重量,是e的分量中1的个数。代数次数至多为1的函数称为仿射函数。

    f(x)Bn,若|{xFn2|f(x)=0}|=2n1,则称该函数是一个平衡的布尔函数。两个布尔函数f(x)Bn, g(x)Bn之间的汉明距离为fg的汉明重量,记作d(f,g),即d(f,g)=wt(fg)

    定义2[16] 布尔函数f(x)Bn的walsh-Hadamard变换是Fn2R上的一个映射,其定义为

    Wf(μ)=2n2xFn2(1)f(x)+μx (2)

    其中,μxμx的内积。若对任意的μFn2,均有|Wf(μ)|=1,则称f(x)为bent函数。

    定义3[7] 布尔函数f(x)Bn,其nega-Hadamard变换是Fn2R上的一个映射,定义为

    Nf(μ)=2n2xFn2(1)f(x)+μxiwt(x) (3)

    其中,i2=1

    定义4[7] 设f(x)Bn,若对任意的μFn2,均有|Nf(μ)|=1,则称函数f(x)为negabent函数。

    定义5[17] 设Q=Fqn, K=Fq为有限域,定义Fqn上的函数为

    TrQK(x)=x+xq++xqn1, xQ (4)

    称此函数为Fqn上的迹函数。

    迹函数具备下述性质:

    (1)Trn1(α+β)=Trn1(α)+Trn1(β),任意的α, βQ

    (2)Trn1(xα)=xTrn1(α),任意的xK, αQ

    (3)Trn1(αq)=Trn1(α),任意的αQ

    (4)Trn1(α)=Trm1(Trnm(α)),任意的αQ,其中m|n

    定理1[12] 设f(x)Bn, f(x)为negabent函数当且仅当对aF2n,均有

    xF2n(1)f(x)+f(x+a)+Trn1(ax)=0 (5)

    定义6[17,18] 设Fqn为有限域,多项式z(x)Fqn[x],若由z(x)诱导的多项式函数是FqnFqn上的一个双射(置换),则称z(x)是有限域Fqn上的一个置换多项式。

    引理1[12] 设q是某个素数幂,z(x)= n1i=0aixqi, z(x)是在Fqn上的置换多项式,当且仅当

    gcd(n1i=1aixi, xn1)=1 (6)

    引理2[12] 设λ1, bF2n, n=2k,方程λy2k+y=b有唯一解y=b+b2k/(1+λ2)

    本节使用了有限域上的迹函数构造了两类negabent函数,并讨论了所构造的negabent函数的计数问题。

    基于引理2中置换多项式的结论,利用迹函数构造了第1类negabent函数:f(x)=Trk1(λx2k+1)Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(ux),其中n=2k,  λF2k, (u,v,m)F2n×F2n×F2n。通过调整参数λ, u, v, m, d中的3个,使得f(x)+f(x+a)+Trn1(ax)是平衡的,保障了f(x)满足定理1的条件。

    定理2 令f(x)=Trk1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(ux),其中(u,v,m)(F2n)3, n=2k,  λF2kf(x)是negabent函数当且仅当f(x)满足下述4个条件之一。

    (1) λ1, (A,B,C,D,E,F)PQ,其中P={ (1,1,1),(0,0,1),(1,1,0), (0,0,0)}×{(0,1,0),(0,1,1),(1,0,0),(1,0,1)} , Q={(0,1,0),(0,1,1), (1,0,0),(1,0,1)}×{(1,1,1), (0,0,1),(0,1,0),(1,0,0)}, Trn1(v1+λ)=A, Trn1(m1+λ)=B, Trn1(v(m+λm2k)1+λ2)=C, Trn1(m(u+λu2k)1+λ2)=D, Trn1(u(v+λv2k)1+λ2)=E,  Trn1(u1+λ)=F

    (2) λ=1, k=3, u, v, m, u+v+m, u+v, u+m, v+mF2k

    (3) λ=1, k=2u, v, m恰有一个属于F2k, u, v, m互不相同;或u, v, mF2k,u + v, u+m, v+m至少有一个属于F2k;或u, v, mF2k,u + v+mF2k

    (4) λ=1, k=1, u, v, m恰有两个属于F2k, u, v, m互不相同;或u, v, m恰有一个属于F2k,其余两个相异或后的结果属于F2k

    证明 根据定理1可知,要证明f(x)是negabent函数,只需证明对任意非零aF2n, f(x)+f(x+a)+Trn1(ax)是平衡的。通过计算可得

    f(x)+f(x+a)+Trn1(ax)=Trk1(λa2k+1)+Trk1(λa2kx+λax2k)+Trn1(ua)Trn1(va)+Trn1(ux)\rm{Tr}n1(va)+Trn1(ua)Trn1(vx)+Trn1(ua)Trn1(ma)+Trn1(ux)\rm{Tr}n1(ma)+Trn1(ua)Trn1(mx)+Trn1(ax)=Trn1((λa2k+a)x)+Trn1((Trn1(va)u+Trn1(ma)u)x)+Trk1(λa2k+1)+Trn1(ua)(Trn1(va)+Trn1(ma))+Trn1((Trn1(ua)v+Trn1(ua)m)x) (7)

    由式(7)可知,对任意的aF2n, f(x)+f(x+a)+Trn1(ax)是平衡的当且仅当λa2k+a+u({\rm{Tr}}n1(va)+Trn1(ma))+(v+m)Trn1(ua)0

    H(a)=λa2k+a+u(Trn1(va)+Trn1(ma))+(v+m)Trn1(ua),下面讨论当参数λ, k, u, v, m满足什么条件时,对任意的aF2n,有H(a)0。注意到H(a)中的Trn1(va),Trn1(ma),Trn1(ua)可能取值0或1,故对于任意的aF2n, u(Trn1(va)+Trn1(ma))+(v+m)Trn1(ua)是关于u, v, m的解析式。结合引理2,得到下面的证明。

    λ1时,有:

    (1)当(Trn1(va),Trn1(ma),Trn1(ua))=(0,0,0)时,H(a)=0当且仅当 a=0

    (2)当(Trn1(va),Trn1(ma),Trn1(ua))=(0,0,1)时,由方程 λy2k+y=v+m有唯一解y=v+m+λ(v+m)2kλ2+1,可得H(a)=0当且仅当a=v+m+λ(v+m)2kλ2+1。由(Trn1(va),Trn1(ma),Trn1(ua))=(0,0,1)

    Trn1(v1+λ)+Trn1(v(m+λm2k)λ2+1)=0Trn1(m1+λ)+Trn1(m(v+λv2k)λ2+1)=0Trn1(u(m+λm2k)λ2+1)+Trn1(u(v+λv2k)λ2+1)=1} (8)

    通过计算可得Trn1(v(m+λm2k)λ2+1)=Trn1((λmv2k)2k(λ2+1)2k)+Trn1(vmλ2+1)=Trn1(λmv2kλ2+1)+Trn1(vmλ2+1)=Trn1(m(v+λv2k)λ2+1),故式(8)等价于

    A+C=0, B+C=0, D+E=1 (9)

    由式(9)可得A=B=C, DE,从而当(A,B,C,D,E){(0,0,0,0,1), (0,0,0,1,0),(1,1,1,0,1),(1,1,1,1,0)}H(a)0

    (3)当(Trn1(va),Trn1(ma),Trn1(ua))=(0,1,0)时,由方程λy2k+y=u有唯一解y=u+λu2kλ2+1,可得H(a)=0当且仅当a=u+λu2kλ2+1,由(Trn1(va),Trn1(ma),Trn1(ua))=(0,1,0)

    Trn1(v(u+λu2k)λ2+1)=0Trn1(m(u+λu2k)λ2+1)=1Trn1(uλ+1)=0} (10)

    式(10)等价于

    D=1, E=0, F=0 (11)

    由式(11)可知,当(D,E,F){(1,0,0)}时,H(a)0

    (4)当(Trn1(va),Trn1(ma),Trn1(ua))=(1,0,0)时,由方程λy2k+y=u有唯一解y=u+λu2kλ2+1,可得H(a)=0当且仅当a=u+λu2kλ2+1,由(Trn1(va),Trn1(ma),Trn1(ua))=(1,0,0)可得

    Trn1(v(u+λu2k)λ2+1)=1Trn1(m(u+λu2k)λ2+1)=0Trn1(uλ+1)=0} (12)

    式(12)等价于

    D=0, E=1, F=0 (13)

    由式(13)可知,当(D,E,F){(0,1,0)}时,H(a)0

    (5)当(Trn1(va),Trn1(ma),Trn1(ua))=(1,1,0)时,H(a)=0当且仅当 a=0

    (6)当(Trn1(va),Trn1(ma),Trn1(ua))=(0,1,1)时,由方程λy2k+y=u+v+m唯一解y=u+v+m+λ(u+v+m)2kλ2+1,可得H(a)=0当且仅当a=u+v+m+λ(u+v+m)2kλ2+1,由(Trn1(va),Trn1(ma),Trn1(ua))=(0,1,1)可得

    Trn1(vλ+1)+Trn1(v(m+u+λ(m+u)2k)λ2+1)=0Trn1(mλ+1)+Trn1(m(v+u+λ(v+u)2k)λ2+1)=1Trn1(uλ+1)+Trn1(u(m+v+λ(m+v)2k)λ2+1)=1} (14)

    Trn1(v(m+λm2k)λ2+1) = Trn1(m(v+λv2k)λ2+1),Trn1(v(u+λu2k)λ2+1) = Trn1(u(v+λv2k)λ2+1),Trn1(u(m+λm2k)λ2+1) = Trn1(m(u+λu2k)λ2+1),故式(14)等价于

    A+C+E=0, B+C+D=1, D+E+F=1 (15)

    由式(15)可知,当(A,B,C,D,E,F){(0,0,0,1,0,0), (0,1,0,0,0,1),(1,0,0,1,1,1), (1,1,0,0,1,0),(1,0,1,0,0,1), (1,1,1,1,0,0),(0,0,1,0,1,0),(0,1,1,1,1,1)}时,H(a)0

    (7)当(Trn1(va),Trn1(ma),Trn1(ua))=(1,0,1)时,由方程λy2k+y=u+v+m唯一解y=u+v+m+λ(u+v+m)2kλ2+1,可得H(a)=0当且仅当a=u+v+m+λ(u+v+m)2kλ2+1,由(Trn1(va),Trn1(ma),Trn1(ua))=(1,0,1) 可得

    Trn1(vλ+1)+Trn1(v(m+u+λ(m+u)2k)λ2+1)=1Trn1(mλ+1)+Trn1(m(v+u+λ(v+u)2k)λ2+1)=0Trn1(uλ+1)+Trn1(u(m+v+λ(m+v)2k)λ2+1)=1} (16)

    Trn1(v(m+λm2k)λ2+1) = Trn1(m(v+λv2k)λ2+1), Trn1(v(u+λu2k)λ2+1) = Trn1(u(v+λv2k)λ2+1), Trn1(u(m+λm2k)λ2+1) = Trn1(m(u+λu2k)λ2+1),故式(16)等价于

    A+C+E=1, B+C+D=0, D+E+F=1 (17)

    由式(17)可知,当(A,B,C,D,E,F){(0,1,1,0,0,1), (0,0,1,1,0,0),(0,0,0,0,1,0), (0,1,0,1,1,1),(1,0,0,0,0,1),(1,1,0,1,0,0), (1,1,1,0,1,0),(1,0,1,1,1,1)}时,H(a)0

    (8)当(Trn1(va),Trn1(ma),Trn1(ua))=(1,1,1)时,由方程λy2k+y=v+m的唯一解y=v+m+λ(v+m)2kλ2+1,可得H(a)=0当且仅当a=v+m+λ(v+m)2kλ2+1,由(Trn1(va),Trn1(ma),Trn1(ua))=(1,1,1)可得

    Trn1(vλ+1)+Trn1(v(m+λm2k)λ2+1)=1Trn1(mλ+1)+Trn1(m(v+λv2k)λ2+1)=1Trn1(u(v+λv2k)λ2+1)+Trn1(u(m+λm2k)λ2+1)=1} (18)

    Trn1(v(m+λm2k)λ2+1)=Trn1(m(v+λv2k)λ2+1),故式(18)等价于

    A+C=1, B+C=1, D+E=1 (19)

    由式(19)可得DE,当(A,B,C,D,E){(0,0,1,1,0),(1,1,0,0,1),(1,1,0,0,1), (0,0,1,0,1),(1,1,0,1,0)}时,H(a)0

    综上所述,当λ1时,若(A,B,C,D,E,F)不属于上述情形,则对任意aF2n,有H(a)=λa2k+a+u(Trn1(va)+Trn1(ma))+(v+m)Trn1(ua)0

    λ=1时,考虑H(a)=0,即a2k+a+u(Trn1(va)+Trn1(ma))+(v+m)Trn1(ua)=0解的个数问题。

    (1) 当(Trn1(va),Trn1(ma),Trn1(ua))(0,0,0)时,其证明与λ1时类似,故不赘述。

    (2) 当(Trn1(va),Trn1(ma),Trn1(ua))=(0,0,0)时,记 L(v,m,u)是在F2n中使得(Trn1(va),Trn1(ma),Trn1(ua))=(0,0,0)a的个数,其中(v,m,u)F2n×F2n×F2n

    由迹函数的平衡性质可得(Trn1(va),Trn1(ma),Trn1(ua)) = (Trn1(a(v+v2k)),Trn1(a(m+m2k)),Trn1(a(u+u2k)))

    因此,易证:

    (a) 当v, m, u恰好有两个属于F2k时,L(v,m,u)=2k11,在此情形下H(a)0当且仅当k=1

    (b) 当v, m, u恰有一个属于F2k时,L(v,m,u)=2k11,在此情形下H(a)0当且仅当k=2

    (c) 当v, m, uF2k时,若v+m+uF2k,或v+m,v+u,m+u恰有一个属于F2k,则L(v,m,u)=2k21,在此情形下H(a)0当且仅当k=2;若v+m+u,v+m,v+u,m+uF2k,则L(v,m,u)=2k31,在此情形下H(a)0当且仅当k=3。显然,当k>3时,H(a)=0至少有1个非零解,即f(x)不是negabent函数。

    注1 在定理2中,当v=u=m时,文献[19]已证明f(x)是negabent函数。

    例1 基于定理2的条件所构造的negabent函数。

    (1) 当λ1时,取λ=0, k=2,相应的n=4,取u=(1,0,0,1),v=(0,0,0,1),m=(0,1,1,0)则计算可得(A,B,C,D,E,F)=(1,0,0,0,1,1)PQ,由此可得negabent函数f(x)=x42+x1x2+x1x3+x1x4+x2x4+x3x4,其中x=(x1,x2,x3,x4)

    (2) 当λ=1, k=3时,相应的n=6,取u=(0,0,0,0,0,1),v=(0,0,0,0,1,1,),m=(0,0,0,1,1,1),由此可得negabent函数f(x)=Tr31(x9)+x4x6,其中x=(x1,x2,x3,x4,x5,x6)

    (3) 当λ=1, k=2时,相应的n=4,取u=(1,1),v=(0,0,1,1),m=(0,0,0,1),由此可得negabent函数f(x)=Tr21(x5)+x1x3+x2x3,其中x=(x1,x2,x3,x4)

    (4) 当λ=1, k=1时,相应的n=2,取u=1,v=0,m=(1,1),由此可得negabent函数f(x)=Tr11(x3)+x12+x1x2,其中x=(x1,x2)

    命题1 当λ1时,定理2中所构造的negabent函数的数量为(2n12)(2n1)(2n4)

    证明 由定理2可知,当λ1时,若

    (Trn1(v1+λ),Trn1(m1+λ),Trn1(u1+λ)){(0,1,1),(0,0,0)} (20)

    (A,B,C,D,E,F)PQ,因此在定理2中所构造出的negabent函数的数量等于使得式(20)成立的(u,v,m)的数量。

    F2n中,使得Trn1(v1+λ)=0v2n11个;在F2n{v}中,使得Trn1(m1+λ)=0m2n12个,在F2n{v,m}中,使得Trn1(u1+λ)=0u2n13个,故使得(Trn1(v1+λ),Trn1(m1+λ),Trn1(u1+λ))=(0,0,0)(u,v,m)的数量为(2n11)(2n12)(2n13)

    F2n{v}中,使得Trn1(m1+λ)=1m2n11个;在F2n{v,m}中,使得Trn1(u1+λ)=1u2n12个,故使得(Trn1(v1+λ),Trn1(m1+λ),Trn1(u1+λ))=(0,1,1)(u,v,m)的数量为(2n11)2(2n12)。综上使式(20)成立的数组(u,v,m)数量为(2n4)(2n11)(2n12)

    (Trn1(v1+λ),Trn1(m1+λ),Trn1(u1+λ)){(1,1,1),(1,0,0)} (21)

    (A,B,C,D,E,F)PQ,因此在定理2中所构造出的negabent函数的数量等于使得式(21)成立的(u,v,m)的数量。

    F2n中,使得Trn1(v1+λ)=1v2n1个;在F2n{v}中,使得Trn1(m1+λ)=0m2n12个,在F2n{v,m}中,使得Trn1(u1+λ)=0u2n13个,故使得(Trn1(v1+λ),Trn1(m1+λ),Trn1(u1+λ))=(1,0,0)(u,v,m)的数量为2n1(2n12)(2n13)个。在F2n{v}中,使得Trn1(m1+λ)=1m2n11个;在F2n{v,m}中,使得Trn1(u1+λ)=1u2n12个,故使得(Trn1(v1+λ),Trn1(m1+λ),Trn1(u1+λ))=(1,1,1)(u,v,m)的数量为2n1(2n11) (2n12)个。综上,使得式(21)成立的数组(u,v,m)数量为 2n1(2n12)(2n14)

    综上所述,当λ1时,使f(x)为negabent函数的有序数组(u,v,m)的数量(2n12)(2n1)(2n4)

    将所构造第1类negabent函数f(x)=Trk1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(ux)中的u调整为两个不同的参数,可得Trk1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(dx),下面讨论参数λ,u,v,m,d满足什么条件时,该函数仍为negabent函数。

    定理3 令f(x)=Trk1(λx2k+1)+Trn1(ux)Trn1(vx)+Trn1(mx)Trn1(dx),其中(u,v,m,d)(F2n)4, n=2k, f(x)是negabent函数当且仅当f(x)满足下面的5个条件之一:

    (1) λ1(A,B,C,D,E,F,G,H,I,J)不属于附录中的所有10元向量。其中,A=Trn1(uλ+1), B=Trn1(vλ+1), C=Trn1(mλ+1), D=Trn1(dλ+1), E=Trn1(u(m+λm2k)λ2+1), F=Trn1(u(v+λv2k)λ2+1), G=Trn1(u(d+λd2k)λ2+1), H=Trn1(m(v+λv2k)λ2+1), I=Trn1(m(d+λd2k)λ2+1), J=Trn1(v(d+λd2k)λ2+1)

    (2) λ=1k=4, u, v, m, dF2k,且u+v+m+dF2k, u, v, m, d互不相同。

    (3) λ=1k=3, u, v, m, dF2k,且u+v+m+dF2k, u, v, m, d互不相同;或u, v, m, d恰有1个属于F2k, u, v, m, d互不相同。

    (4) λ=1, k=2,u, v, m, d恰有2个属于F2ku, v, m, d互不相同。

    (5) λ=1, k=1,u, v, m, d恰有3个属于F2k

    注2 定理3的证明与定理2证明类似,这里不再赘述。

    例2 基于定理3的条件所构造的negabent函数。

    (1) 当λ1时,取λ=0, k=2,相应的n=2,取u=(0,1,1,1),v=(1,1,1,0),m=(1,0,1,1),d=(0,1,0,1),则计算可得(A,B,C,D,E,F,G,H,I,J)=(1,0,1,0,0,0,0,1,1,1)不在附表内,由此可得negabent函数f(x)=x22+x32+x42+x1x3+x2x3,其中x=(x1,x2,x3,x4,x5,x6)

    (2) 当λ=1, k=4时,相应的n=8,取u=(0,0,0,0,0,0,0,1), v=(0,0,0,0,0,0,1,1), m=(0,0,0,1,1,0,0,1), d=(0,0,0,0,1,1,0,1),由此可得negabent函数f(x)=Tr41(x17)+x52+x4x5+x4x6+x4x8+x5x6+x6x8+x7x8,其中x=(x1,x2,x3,x4,x5,x6,x7,x8)

    (3) 当λ=1, k=3时,相应的n=6,任取u=(0,0,0,1), v=(0,0,0,1,0,1), m=(0,0,1,1,0,1), d=(0,0,0,0,1,1),由此可得negabent函数f(x)=Tr31(x9)+x42+x62+x3x5+x3x6+x4x5+x5x6,其中x=(x1,x2,x3,x4,x5,x6)

    (4) 当λ=1, k=2时,相应的n=4,取u=(0,1),v=(1,1),m=(0,0,0,1),d=(0,0,1,1), 由此可得negabent函数f(x)=Tr21(x5)+x22+x42+x1x2+x3x4,其中x=(x1,x2,x3,x4)

    (5) 当λ=1, k=1时,相应的n=2,取u=v=0,m=1,d=(0,1),由此可得negabent函数f(x)=Tr11(x3)+x1x2,其中x=(x1,x2)

    在第2类negabent函数的构造中,同样基于引理2中置换多项式的结论,利用迹函数构造negabent函数。与所构造的第1类negabent函数相比较,第2类negabent函数中可调的参数更多,因此由第2种构造方法可获得更多negabent函数。

    命题2 当λ1时,定理3中所构造的negabent函数数量的下界为2n1[(2n12)(2n13)+2n14]

    证明 如定理3所示,f(x)中的u, v, m, d互不相同,确定有序数组(u,v,m,d)数量即可得到所构造出的negabent函数数量,将附表中的10元向量归纳可得:由定理3中的方法构造出的negabent函数的计数下界为2n1[(2n12)(2n13)+2n14]

    本文借鉴文献[12] 中利用有限域上的迹函数构造negabent函数的思想方法,通过增加可调参数获得了更多的negabent函数。文献[12]与本文所构造的negabent函数数量如表1所示。

    表 1  不同调参方案所构造函数数量
    调整的参数计数
    文献[12]u,v(2n12)(2n1)
    定理2u,v,m(2n12)(2n1)(2n4)
    定理3u,v,m,d2n1[(2n12)(2n13)+2n14]
    下载: 导出CSV 
    | 显示表格

    Negabent函数作为bent函数的一种拓展,在密码学与编码理论中有着广泛应用,因此构造negabent函数具有重要实际意义。本文将迹函数与置换多项式相结合,提出了两种构造negabent函数的方法,解决了所构造出来的negabent函数的计数问题。研究结果表明,利用本方法可以获得大量的negabent函数。

    定理3中λ1(A,B,C,D,E,F,G,H,I,J)不取的10元向量
    11000000001100000100111101000111000000011111110001110000010111111101101100000111111000000011100001001111001100
    11111100001111101100111110010111111011111111111011000000001011010000011111000100111110010011110111011111001110
    11111010111111111010000000010100000000111110110101111110000111110110101111000110111101111111111101010000001101
    00000001101110101001111100001011110110001110101101111101010111111011010000010101000000111011100100101110111000
    11110011111110100110111100110111111010010000011010000001001111100100011110110001111100001111100110111111000101
    11111000100000011101000010010111100011101110100111111011110011010111011110110011111100011100010000100000111010
    11100000101110100010111011100111010110101110101000111011110100010010000000111101110111011111100110011110110010
    11010110011110011101111011011100010100000001000011110100010011100000011110101110110101001011100101101110110110
    00011000000001000110110001111111011100001110011100110100010111100011111110101111000111110000010010011100010010
    11011001011110001000110011011111100001101110000111001000001000010100011100000010110110001011100000111100101111
    11011111111101111101001000011000011001001011111010110100001011011010111100100110110110100111011110110010010000
    00011011001011011100110011110011010111101100010100110100011011011110100010100001000111011110110100111100101011
    11010101101100001001110001011011011011110010101101000111110110110010101100100010110101000010111110111100000110
    11011011010010111001001000001110100111101100010000110100001110111101011011111101110110101000110000000010101111
    10100111001100001000110011001010111001011011010111110101010000110000100010111101101001101110111111001100011101
    10111000111011001011110011110100110001010011000011101001001010111101001100011010101100111010101100111100111010
    00110001110011100000101000101010111001111100000011101011110110100111111100110110001101101000111001001001100101
    10111000101011111110101011010110100101101100100101001101110100111001011001011111101101110110111101101010101111
    10100010111011111111001110011000111001111001010101101101101010111100111010101110100111101010111101110100000000
    00111110101001001010101100010110111010101010100110100110110110111011110100001000001111110110000111101010111001
    10110100001010100011100100101110111010110100010000010000000110000100101010110100101100100010100101001000111000
    10110010010100011000010000100110000100011010100010101011111010011111011000010111101100011001001000000100010001
    10000011001010010000101011101110011101111000010110101011111101001010000100011100100000101010011111001010110010
    10011000111000001011101011011101001100000100100100011111001010011101101010101100100100100101111111011010110110
    01001110000100101000011101101010011011001010101010100011110101111110101010101011010100000001001011000111000100
    10011000101010011000100011101001111001011001101111011000000001001101000110111100100101010010100011101000100110
    01111000101001101011011001000001001111000110010010100100100010011011101000100101011101101110010111100111000000
    01010001000110001000100010010010011010101000100011011100010110001111110111011000010100100101100000101000100010
    10010111010111110001011010111010001101101000000010011000010001011110011000011101100101101001111011100110010110
    10001010111000100000011001000101011101011000011100100011001001111011000110010011100010011110001010010111000001
    01011010111000011010100010101001110111010110001001011111111110001101110111011001010101000010000010001000001110
    01110000110110000110011111100010010000101000000011010100101010000001010111101001011010011001011111110111110110
    10010001011000000110010100100001111101000111011110011001010101011011110111101011100101100010001000010101000010
    01111001110111000110011000010101010101000111011111100110000110001010000100111010011110000001101100100101100100
    01010010110111000111100110100010001100110100110010011101110001100000110101100001010100011001101110011001110001
    10010000110100101010011100001001011100000101001101010011101101101101101010000010100110000001001000100110100010
    01011010000101000101010011001101101010101010000101100110100101000110100110010100010100111001001111010100101011
    01100101111010001001101000001101000100100110000001010100001101001101010100100011011000011110100100011010000110
    01000010100101100000010011111001001011010100011011010111111010101001111010001111010000001001010011000100110110
    01001001010100010101010111010010101100001010010111001111110001010000010100101110010001110101000011010101101001
    10110000101010101001001111100101001110010100100110010001011001000001010101001111101101010010101100010011110110
    01001100010100011110010000111000111101110101000111101110000010110000110011010001010010100101000100110100000011
    00111011110100111111101111100010110001110011010000010010000101000010110011111111001101101101001101111100011000
    10110101010011001111010001100101000001100011111000001101010001001011111100101100101111100100110011010100010100
    00111010100011101110001100101101001001111100110001111000110000110010100100001100001101111100111000110011001001
    01000111111101000000111000110100110010000100000100001101100000101100010011000110010001011111100010011111000001
    00100110010011100010001011001000101011000010111011010000111111110000000001110110001001001000101000100010101010
    00101001100010010110010000011100001001100001101011001000101000100101010010100111001010001100100100110011101011
    00001000110000111110000101100000011100000010001000001001100000100010110010111100111000010100001110110001010010
    00011000100001111000001000111100010110010010110110000011001100001101100001001010000101111100011100100001110001
    00010101100010101011000010111000001010110000110101000101101100011010100001100110000100101100100111110000010110
    11010001110000101101000101011100001100100001100011000001111000011111100000001010000010001000000100100001001101
    00001010100001000101000001101100011110010000001011
    下载: 导出CSV 
    | 显示表格
  • 表  1  不同调参方案所构造函数数量

    调整的参数计数
    文献[12]u,v(2n12)(2n1)
    定理2u,v,m(2n12)(2n1)(2n4)
    定理3u,v,m,d2n1[(2n12)(2n13)+2n14]
    下载: 导出CSV
    定理3中λ1(A,B,C,D,E,F,G,H,I,J)不取的10元向量
    11000000001100000100111101000111000000011111110001110000010111111101101100000111111000000011100001001111001100
    11111100001111101100111110010111111011111111111011000000001011010000011111000100111110010011110111011111001110
    11111010111111111010000000010100000000111110110101111110000111110110101111000110111101111111111101010000001101
    00000001101110101001111100001011110110001110101101111101010111111011010000010101000000111011100100101110111000
    11110011111110100110111100110111111010010000011010000001001111100100011110110001111100001111100110111111000101
    11111000100000011101000010010111100011101110100111111011110011010111011110110011111100011100010000100000111010
    11100000101110100010111011100111010110101110101000111011110100010010000000111101110111011111100110011110110010
    11010110011110011101111011011100010100000001000011110100010011100000011110101110110101001011100101101110110110
    00011000000001000110110001111111011100001110011100110100010111100011111110101111000111110000010010011100010010
    11011001011110001000110011011111100001101110000111001000001000010100011100000010110110001011100000111100101111
    11011111111101111101001000011000011001001011111010110100001011011010111100100110110110100111011110110010010000
    00011011001011011100110011110011010111101100010100110100011011011110100010100001000111011110110100111100101011
    11010101101100001001110001011011011011110010101101000111110110110010101100100010110101000010111110111100000110
    11011011010010111001001000001110100111101100010000110100001110111101011011111101110110101000110000000010101111
    10100111001100001000110011001010111001011011010111110101010000110000100010111101101001101110111111001100011101
    10111000111011001011110011110100110001010011000011101001001010111101001100011010101100111010101100111100111010
    00110001110011100000101000101010111001111100000011101011110110100111111100110110001101101000111001001001100101
    10111000101011111110101011010110100101101100100101001101110100111001011001011111101101110110111101101010101111
    10100010111011111111001110011000111001111001010101101101101010111100111010101110100111101010111101110100000000
    00111110101001001010101100010110111010101010100110100110110110111011110100001000001111110110000111101010111001
    10110100001010100011100100101110111010110100010000010000000110000100101010110100101100100010100101001000111000
    10110010010100011000010000100110000100011010100010101011111010011111011000010111101100011001001000000100010001
    10000011001010010000101011101110011101111000010110101011111101001010000100011100100000101010011111001010110010
    10011000111000001011101011011101001100000100100100011111001010011101101010101100100100100101111111011010110110
    01001110000100101000011101101010011011001010101010100011110101111110101010101011010100000001001011000111000100
    10011000101010011000100011101001111001011001101111011000000001001101000110111100100101010010100011101000100110
    01111000101001101011011001000001001111000110010010100100100010011011101000100101011101101110010111100111000000
    01010001000110001000100010010010011010101000100011011100010110001111110111011000010100100101100000101000100010
    10010111010111110001011010111010001101101000000010011000010001011110011000011101100101101001111011100110010110
    10001010111000100000011001000101011101011000011100100011001001111011000110010011100010011110001010010111000001
    01011010111000011010100010101001110111010110001001011111111110001101110111011001010101000010000010001000001110
    01110000110110000110011111100010010000101000000011010100101010000001010111101001011010011001011111110111110110
    10010001011000000110010100100001111101000111011110011001010101011011110111101011100101100010001000010101000010
    01111001110111000110011000010101010101000111011111100110000110001010000100111010011110000001101100100101100100
    01010010110111000111100110100010001100110100110010011101110001100000110101100001010100011001101110011001110001
    10010000110100101010011100001001011100000101001101010011101101101101101010000010100110000001001000100110100010
    01011010000101000101010011001101101010101010000101100110100101000110100110010100010100111001001111010100101011
    01100101111010001001101000001101000100100110000001010100001101001101010100100011011000011110100100011010000110
    01000010100101100000010011111001001011010100011011010111111010101001111010001111010000001001010011000100110110
    01001001010100010101010111010010101100001010010111001111110001010000010100101110010001110101000011010101101001
    10110000101010101001001111100101001110010100100110010001011001000001010101001111101101010010101100010011110110
    01001100010100011110010000111000111101110101000111101110000010110000110011010001010010100101000100110100000011
    00111011110100111111101111100010110001110011010000010010000101000010110011111111001101101101001101111100011000
    10110101010011001111010001100101000001100011111000001101010001001011111100101100101111100100110011010100010100
    00111010100011101110001100101101001001111100110001111000110000110010100100001100001101111100111000110011001001
    01000111111101000000111000110100110010000100000100001101100000101100010011000110010001011111100010011111000001
    00100110010011100010001011001000101011000010111011010000111111110000000001110110001001001000101000100010101010
    00101001100010010110010000011100001001100001101011001000101000100101010010100111001010001100100100110011101011
    00001000110000111110000101100000011100000010001000001001100000100010110010111100111000010100001110110001010010
    00011000100001111000001000111100010110010010110110000011001100001101100001001010000101111100011100100001110001
    00010101100010101011000010111000001010110000110101000101101100011010100001100110000100101100100111110000010110
    11010001110000101101000101011100001100100001100011000001111000011111100000001010000010001000000100100001001101
    00001010100001000101000001101100011110010000001011
    下载: 导出CSV
  • [1] ROTHAUS O S. On “bent” functions[J]. Journal of Combinatorial Theory, Series A, 1976, 20(3): 300–305. doi: 10.1016/0097-3165(76)90024-8
    [2] RIERA C and PARKER M G. Generalized bent criteria for Boolean functions (I)[J]. IEEE Transactions on Information Theory, 2006, 52(9): 4142–4159. doi: 10.1109/TIT.2006.880069
    [3] 任明生. Nega-Hadamard变换和Negabent函数的研究[D]. [硕士论文], 淮北师范大学, 2017.

    REN Mingsheng. Research on Nega-Hadamard transform and Negabent function[D]. [Master dissertation], Huaibei Normal University, 2017.
    [4] SCHMIDT K U, PARKER M G, and POTT A. Negabent functions in the Maiorana–McFarland class[C]. 5th International Conference on Sequences and Their Applications-SETA 2008, Lexington, USA, 2008: 390–402.
    [5] PARKER M G and POTT A. On Boolean functions which are bent and Negabent[C]. International Workshop on Sequences, Subsequences, and Consequences 2007, Los Angeles, USA, 2007: 9–23.
    [6] STĂNICĂ P, GANGOPADHYAY S, CHATURVEDI A, et al. Nega-Hadamard transform, bent and Negabent functions[C]. 6th International Conference on Sequences and Their Applications-SETA 2010, Paris, France, 2010: 359–372.
    [7] STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Investigations on bent and Negabent functions via the Nega-Hadamard transform[J]. IEEE Transactions on Information Theory, 2012, 58(6): 4064–4072. doi: 10.1109/TIT.2012.2186785
    [8] SU Wei, POTT A, and TANG Xiaohu. Characterization of Negabent functions and construction of bent-Negabent functions with maximum algebraic degree[J]. IEEE Transactions on Information Theory, 2013, 59(6): 3387–3395. doi: 10.1109/TIT.2013.2245938
    [9] MANDAL B, MAITRA Su, and STĂNICĂ P. On the existence and non-existence of some classes of bent-Negabent functions[J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33(3): 237–260. doi: 10.1007/s00200-020-00444-w
    [10] SARKAR S. Characterizing Negabent Boolean functions over finite fields[C]. 7th International Conference on Sequences and Their Applications-SETA 2012, Waterloo, Canada, 2012: 77–88.
    [11] ZHOU Yue and QU Longjiang. Constructions of Negabent functions over finite fields[J]. Cryptography and Communications, 2017, 9(2): 165–180. doi: 10.1007/s12095-015-0167-0
    [12] WU Gaofei, LI Nian, ZHANG Yuqing, et al. Several classes of Negabent functions over finite fields[J]. Science China Information Sciences, 2018, 61(3): 038102. doi: 10.1007/s11432-017-9096-0
    [13] JIANG Niu, ZHAO Min, YANG Zhiyao, et al. Characterization and properties of bent-Negabent functions[J]. Chinese Journal of Electronics, 2022, 31(4): 786–792. doi: 10.1049/cje.2021.00.417
    [14] GUO Fei, WANG Zilong, and GONG Guang. Several secondary methods for constructing bent-Negabent functions[J]. Designs, Codes and Cryptography, 2023, 91(3): 971–995. doi: 10.1007/s10623-022-01133-0
    [15] STĂNICĂ P, MANDAL B, and MAITRA S. The connection between quadratic bent-Negabent functions and the Kerdock code[J]. Applicable Algebra in Engineering, Communication and Computing, 2019, 30(5): 387–401. doi: 10.1007/s00200-019-00380-4
    [16] 周宇, 胡予濮, 董新锋. 布尔函数的设计与分析[M]. 北京: 国防工业出版社, 2015: 20–55.

    ZHOU Yu, HU Yupu, and DONG Xinfeng. Design and Analysis of Boolean Functions[M]. Beijing: National Defense Industry Press, 2015: 20–55.
    [17] LIDL R and NIEDERREITER H. Finite Fields[M]. 2nd ed. London: Cambridge University Press, 1996: 54–62.
    [18] WU Danyao and YUAN Pingzhi. Further results on permutation polynomials from trace functions[J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33(4): 341–351. doi: 10.1007/s00200-020-00456-6
    [19] SARKAR S. Some results on bent-Negabent Boolean functions over finite fields[EB/OL]. https://arxiv.org/abs/1406.1036, 2014.
  • 加载中
表(2)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  180
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-09
  • 修回日期:  2023-06-09
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2024-01-17

目录

/

返回文章
返回