高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵元位置互质的线性阵列:阵列校正和波束形成

梁梦薇 何劲 舒汀 郁文贤

梁梦薇, 何劲, 舒汀, 郁文贤. 阵元位置互质的线性阵列:阵列校正和波束形成[J]. 电子与信息学报, 2024, 46(1): 240-248. doi: 10.11999/JEIT221539
引用本文: 梁梦薇, 何劲, 舒汀, 郁文贤. 阵元位置互质的线性阵列:阵列校正和波束形成[J]. 电子与信息学报, 2024, 46(1): 240-248. doi: 10.11999/JEIT221539
LIANG Mengwei, HE Jin, SHU Ting, YU Wenxian. Linear Coprime Sensor Location Arrays: Array Calibration and Beamforming[J]. Journal of Electronics & Information Technology, 2024, 46(1): 240-248. doi: 10.11999/JEIT221539
Citation: LIANG Mengwei, HE Jin, SHU Ting, YU Wenxian. Linear Coprime Sensor Location Arrays: Array Calibration and Beamforming[J]. Journal of Electronics & Information Technology, 2024, 46(1): 240-248. doi: 10.11999/JEIT221539

阵元位置互质的线性阵列:阵列校正和波束形成

doi: 10.11999/JEIT221539
基金项目: 国家自然科学基金(61771302)
详细信息
    作者简介:

    梁梦薇:女,博士生,主要研究方向为阵列信号处理、雷达信号处理

    何劲:男,副研究员,主要研究方向为阵列信号处理、雷达信号处理

    舒汀:男,副研究员,主要研究方向为阵列信号处理、雷达信号处理

    郁文贤:男,教授,主要研究方向为雷达信号处理、遥感信号处理

    通讯作者:

    何劲 jinhe@sjtu.edu.cn

  • 中图分类号: TN911

Linear Coprime Sensor Location Arrays: Array Calibration and Beamforming

Funds: The National Natural Science Foundation of China (61771302)
  • 摘要: 该文研究了阵元位置互质的线性阵列(CLA)的阵列校正和波束形成问题。在假设CLA天线单元部分校准的条件下,基于同时干扰定位与阵列校正(SILAC)技术,设计了一种适用于CLA的阵列校正和波束形成方法:CLA-SILAC-INCM算法。从理论上分析证明了,当CLA中包含有Lc≥3个完全校准的天线单元,使用SILAC技术可以高精度无模糊地实现干扰源角度和阵列天线幅相误差估计,并在此基础上完成干扰噪声协方差矩阵(INCM)重建和波束形成最优权向量构造。通过仿真实验验证了,提出的CLA-SILAC-INCM算法具有比其他常用算法更好的性能,尤其是信噪比接近干噪比时,CLA-SILAC-INCM算法的优势更为明显。
  • 图  1  阵列的信号接收示意图

    图  2  CLA各天线单元幅度和相位的标准值、实际值和估计值

    图  3  阵列完全校正时的波束形成

    图  4  阵列存在方向误差时的波束形成

    图  5  存在随机幅度相位误差时波束形成

    图  6  复杂环境下的波束形成

    图  7  目标探测多普勒图

  • [1] CARLSON B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397–401. doi: 10.1109/7.7181
    [2] LI Jian, STOICA P, and WANG Zhisong. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702–1715. doi: 10.1109/TSP.2003.812831
    [3] SULEESATHIRA R. Robust null broadening beamforming based on adaptive diagonal loading for look direction mismatch[C]. The 13th International Conference on Knowledge and Smart Technology (KST), Bangsaen, Thailand, 2021: 49–54.
    [4] CHANG L and YEH C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(11): 1336–1347. doi: 10.1109/8.202711
    [5] WANG Xiangmin, ZHENG Wan, GUO Lingling, et al. A robust eigenspace-based adaptive beamforming algorithm[C/OL]. The IET International Radar Conference (IET IRC 2020), 2020: 1404–1409.
    [6] DOGAN M C and MENDEL J M. Cumulant-based blind optimum beamforming[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 722–741. doi: 10.1109/7.303742
    [7] ZHANG Jun, XU Xiangyuan, CHEN Zhifei, et al. High-resolution DOA estimation algorithm for a single acoustic vector sensor at low SNR[J]. IEEE Transactions on Signal Processing, 2020, 68: 6142–6158. doi: 10.1109/TSP.2020.3021237
    [8] VOROBYOV S A, GERSHMAN A B, and LUO Zhiquan. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865
    [9] HUANG Yongwei, YANG Wenzheng, and VOROBYOV S A. Robust adaptive beamforming maximizing the worst-case SINR over distributional uncertainty sets for random INC matrix and signal steering vector[C]. The 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022: 4918–4922.
    [10] APPLEBAUM S P and CHAPMAN D J. Adaptive arrays with main beam constraints[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 650–662. doi: 10.1109/TAP.1976.1141416
    [11] LIAO Bin, GUO Chongtao, HUANG Lei, et al. Robust adaptive beamforming with precise main beam control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 345–356. doi: 10.1109/TAES.2017.2650578
    [12] GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289
    [13] ZHENG Zhi, YANG Tong, WANG Wenqin, et al. Robust adaptive beamforming via simplified interference power estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3139–3152. doi: 10.1109/TAES.2019.2899796
    [14] YANG Liusha, MCKAY M R, and COUILLET R, et al. High-dimensional MVDR beamforming: Optimized solutions based on spiked random matrix models[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1933–1947. doi: 10.1109/TSP.2018.2799183
    [15] PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
    [16] 卢建, 杨剑, 侯博, 等. 基于虚拟阵元信号重构的嵌套阵稳健波束形成[J]. 系统工程与电子技术, 2021, 43(5): 1161–1168. doi: 10.12305/j.issn.1001-506X.2021.05.01

    LU Jian, YANG Jian, HOU Bo, et al. Robust beamforming of nested array based on virtual elements signal reconstruction[J]. Systems Engineering and Electronics, 2021, 43(5): 1161–1168. doi: 10.12305/j.issn.1001-506X.2021.05.01
    [17] VAIDYANATHAN P P and PAL P. Sparse sensing with Co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [18] 吴癸周, 张源, 张文俊, 等. 基于互质阵列的运动单站信号直接定位方法[J]. 雷达学报, 2022, 11(4): 692–704. doi: 10.12000/JR22056

    WU Guizhou, ZHANG Yuan, ZHANG Wenjun, et al. Coprime array based direct position determination of signals with single moving observation[J]. Journal of Radars, 2022, 11(4): 692–704. doi: 10.12000/JR22056
    [19] 刘可, 朱泽政, 于军, 等. 基于互质阵列孔洞分析的稀疏阵列设计方法[J]. 电子与信息学报, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024

    LIU Ke, ZHU Zezheng, YU Jun, et al. Sparse array design methods based on hole analysis of the coprime array[J]. Journal of Electronics &Information Technology, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024
    [20] 何劲, 唐莽, 舒汀, 等. 阵元位置互质的线性阵列: 互耦分析和角度估计[J]. 电子与信息学报, 2022, 44(8): 2852–2858. doi: 10.11999/JEIT210489

    HE Jin, TANG Mang, SHU Ting, et al. Linear coprime sensor location arrays: Mutual coupling effect and angle estimation[J]. Journal of Electronics &Information Technology, 2022, 44(8): 2852–2858. doi: 10.11999/JEIT210489
    [21] HE Jin, SHU Ting, DAKULAGI V, et al. Simultaneous interference localization and array calibration for robust adaptive beamforming with partly calibrated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2850–2863. doi: 10.1109/TAES.2021.3068430
    [22] WAX M and KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2): 387–392. doi: 10.1109/TASSP.1985.1164557
    [23] YANG Zai, STOICA P, and TANG Jinhui. Source resolvability of spatial-smoothing-based subspace methods: A hadamard product perspective[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2543–2553. doi: 10.1109/TSP.2019.2908142
    [24] WU H T, YANG J F, and CHEN F K. Source number estimators using transformed Gerschgorin radii[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1325–1333. doi: 10.1109/78.388844
    [25] 金芳晓, 邱天爽, 王鹏, 等. 基于l1稀疏正则化的信源个数估计新算法[J]. 通信学报, 2016, 37(10): 75–80. doi: 10.11959/j.issn.1000-436x.2016198

    JIN Fangxiao, QIU Tianshuang, WANG Peng, et al. New source number estimation algorithm based on l1 sparse regularization[J]. Journal on Communications, 2016, 37(10): 75–80. doi: 10.11959/j.issn.1000-436x.2016198
    [26] 张小飞, 李建峰, 徐大专, 等. 阵列信号处理及MATLAB实现[M]. 2版. 北京: 电子工业出版社, 2020: 72–74.

    ZHANG Xiaofei, LI Jianfeng, XU Dazhuan, et al. Array Signal Processing and MATLAB Implementation[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2020: 72–74.
    [27] MENDEL J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[J]. Proceedings of the IEEE, 1991, 79(3): 278–305. doi: 10.1109/5.75086
    [28] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [29] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
  • 加载中
图(7)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  144
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-05-25
  • 网络出版日期:  2023-06-09
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回