高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IRS增强信息与能量同传赋能物联网的鲁棒公平性资源分配算法

李世党 陈锦 陈影影 龙春梅 徐劲松 李春国

李世党, 陈锦, 陈影影, 龙春梅, 徐劲松, 李春国. IRS增强信息与能量同传赋能物联网的鲁棒公平性资源分配算法[J]. 电子与信息学报, 2024, 46(1): 129-137. doi: 10.11999/JEIT221509
引用本文: 李世党, 陈锦, 陈影影, 龙春梅, 徐劲松, 李春国. IRS增强信息与能量同传赋能物联网的鲁棒公平性资源分配算法[J]. 电子与信息学报, 2024, 46(1): 129-137. doi: 10.11999/JEIT221509
LI Shidang, CHEN Jin, CHEN Yingying, LONG Chunmei, XU Jinsong, LI Chunguo. A Robust Fairness Resource Allocation Algorithm for SWIPT-Enabled Internet of Things with IRS[J]. Journal of Electronics & Information Technology, 2024, 46(1): 129-137. doi: 10.11999/JEIT221509
Citation: LI Shidang, CHEN Jin, CHEN Yingying, LONG Chunmei, XU Jinsong, LI Chunguo. A Robust Fairness Resource Allocation Algorithm for SWIPT-Enabled Internet of Things with IRS[J]. Journal of Electronics & Information Technology, 2024, 46(1): 129-137. doi: 10.11999/JEIT221509

IRS增强信息与能量同传赋能物联网的鲁棒公平性资源分配算法

doi: 10.11999/JEIT221509
基金项目: 国家自然科学基金(62171119),国家重点研发计划(2017YFF0205500),徐州市重点研发项目(KC20027, KC18079),教育部春晖计划国际合作项目(202201406, HZKY20220171)
详细信息
    作者简介:

    李世党:男,讲师,研究方向为智能反射面辅助通信、雷达通信一体化等

    陈影影:女,讲师,研究方向为地理信息系统中的现代信号处理等

    徐劲松:男,教授,硕导,研究方向为卫星导航、工业物联网的资源管理等

    李春国:男,教授,博导,研究方向为无线通信与网络安全理论与技术、面向视频/图片的人工智能信号处理理论等

    通讯作者:

    陈影影 6020160117@jsnu.edu.cn

  • 中图分类号: TN929.5

A Robust Fairness Resource Allocation Algorithm for SWIPT-Enabled Internet of Things with IRS

Funds: The National Natural Science Foundation of China (62171119), The National Key R&D Program of China (2017YFF0205500), The Key Research and Development Plan of Xuzhou (KC20027, KC18079), The Chunhui Plan International Cooperation Project of China Education Ministry (202201406, HZKY20220171)
  • 摘要: 针对6G物联网中信道误差影响与用户采集能量的公平性问题,该文在用户信干噪比受限、发射功率约束和反射相位模一约束的条件下,研究了智能反射面(IRS)辅助的信息与能量同传(SWIPT)系统中公平性采集能量最大化问题。为了解决该非凸问题,分别运用Schur-Complement和S-Procedure将无限维约束转换为有限维的矩阵线性不等式,然后利用罚函数和连续凸逼近的方法将难以求解的原问题转化为标准的凸优化问题,进而提出了一种迭代的鲁棒公平性能量采集算法。数值结果表明,所提鲁棒优化算法能够明显提升网络采集的公平性能量。
  • 图  1  所提鲁棒算法的收敛性能

    图  2  不同的发射功率对公平性采集能量性能的影响

    图  3  不同的$ {\gamma _{\min }} $对公平性采集能量性能的影响

    图  4  不同反射单元数目对公平性采集能量的影响

    算法1 所提鲁棒优化算法
     设置最大迭代次数$ {L_{\max }} $, $ m = 0 $,和$ {{\boldsymbol{q}}^{\left( 0 \right)}} $,
     (1) while $ m \le {L_{\max }} $ do
     (2) 固定$ {{\boldsymbol{q}}^{\left( m \right)}} $,求解子问题1,输出$ \left\{ {{\boldsymbol{w}}_k^ * ,\rho _k^{\left( * \right)}} \right\} $, $ {t^{\left( * \right)}} $和$ {\boldsymbol{V}}_e^ * $,更
       新$ {\boldsymbol{w}}_k^{\left( {m + 1} \right)} = {\boldsymbol{w}}_k^ * $, $ {\boldsymbol{V}}_e^{\left( {m + 1} \right)} = {\boldsymbol{V}}_e^{\left( * \right)} $, $ \rho _k^{\left( {m + 1} \right)} = \rho _k^{\left( * \right)} $,
       $ {t^{\left( {m + 1} \right)}} = {t^{\left( * \right)}} $
     (3) 给定$ {\boldsymbol{w}}_k^{\left( {m + 1} \right)} $, $ {\boldsymbol{V}}_e^{\left( {m + 1} \right)} $, $ \rho _k^{\left( {m + 1} \right)} $和$ {t^{\left( {m + 1} \right)}} $,求解子问题2,
       输出$ {{\boldsymbol{q}}^{\left( {m + 1} \right)}} $
     (4) 令$ m = m + 1 $
     (5) end while
     (6) 输出$ {\boldsymbol{w}}_k^ * $, $ {\boldsymbol{V}}_e^{\left( * \right)} $, $ \rho _k^{\left( * \right)} $, $ {t^{\left( * \right)}} $和$ {{\boldsymbol{q}}^{\left( * \right)}} $
    下载: 导出CSV
  • [1] XU Yongjun, XIE Hao, LI Dong, et al. Energy-efficient beamforming for heterogeneous industrial IoT networks with phase and distortion noises[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7423–7434. doi: 10.1109/TII.2022.3158612
    [2] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [3] WANG Dongming, ZHANG Chuan, DU Yongqiang, et al. Implementation of a cloud-based cell-free distributed massive MIMO system[J]. IEEE Communications Magazine, 2020, 58(8): 61–67. doi: 10.1109/MCOM.001.2000106
    [4] ZHAI Chao, LI Yujun, LI Chunguo, et al. Cognitive relaying with wireless energy harvesting and accumulation[J]. IEEE Systems Journal, 2021, 15(1): 629–640. doi: 10.1109/JSYST.2020.2991235
    [5] XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-Enhanced WPCNs: Joint Radio Resource Allocation and Passive Beamforming Optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603
    [6] 徐勇军, 高正念, 王茜竹, 等. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报, 2022, 44(7): 2317–2324. doi: 10.11999/JEIT210714

    XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2317–2324. doi: 10.11999/JEIT210714
    [7] GAO Zhengnian, XU Yongjun, WANG Qianzhu, et al. Outage-constrained energy efficiency maximization for RIS-assisted WPCNs[J]. IEEE Communications Letters, 2021, 25(10): 3370–3374. doi: 10.1109/LCOMM.2021.3101657
    [8] JI Taotao, HUA Meng, LI Chunguo, et al. A robust IRS-aided wireless information surveillance design with bounded channel errors[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2210–2214. doi: 10.1109/LWC.2022.3197228
    [9] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798
    [10] MENSI N and RAWAT D B. On the performance of partial RIS selection vs. Partial relay selection for vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9475–9489. doi: 10.1109/TVT.2022.3177130
    [11] XU Wangyang, AN Jiancheng, XU Yongjun, et al. Time-varying channel prediction for RIS-assisted MU-MISO networks via deep learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(4): 1802–1815. doi: 10.1109/TCCN.2022.3188153
    [12] AGRAWAL N, BANSAL A, SINGH K, et al. Performance evaluation of RIS-assisted UAV-enabled vehicular communication system with multiple non-identical interferers[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9883–9894. doi: 10.1109/TITS.2021.3123072
    [13] JI Baofeng, WANG Yanan, XING Ling, et al. IRS-driven cybersecurity of healthcare cyber physical systems[J] IEEE Transactions on Network Science and Engineering, 2022.
    [14] KISSELEFF S, MARTINS W A, AI-HRAISHAWI H, et al. Reconfigurable intelligent surfaces for smart cities: Research challenges and opportunities[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1781–1797. doi: 10.1109/OJCOMS.2020.3036839
    [15] HOANG T M, DINH-VAN S, BARN B, et al. RIS-aided smart manufacturing: Information transmission and machine health monitoring[J]. IEEE Internet of Things Journal, 2022, 9(22): 22930–22943. doi: 10.1109/JIOT.2022.3187189
    [16] SONG Kang, NIE Mengyun, JIANG Jing, et al. On the secrecy for relay-aided SWIPT internet of things system with cooperative eavesdroppers[J]. IEEE Access, 2021, 9: 28204–28212. doi: 10.1109/ACCESS.2021.3058504
    [17] KRIKIDIS I. SWIPT in 3-D bipolar Ad hoc networks with sectorized antennas[J]. IEEE Communications Letters, 2016, 20(6): 1267–1270. doi: 10.1109/LCOMM.2016.2557319
    [18] WEN Zhigang, GUO Zhimei, BEAULIEU N C, et al. Robust beamforming design for multi-user MISO full-duplex SWIPT system with channel state information uncertainty[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1942–1947. doi: 10.1109/TVT.2018.2884514
    [19] JANG S, LEE H, KANG S, et al. Energy efficient SWIPT systems in multi-cell MISO networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(12): 8180–8194. doi: 10.1109/TWC.2018.2874646
    [20] WU Qingqing and ZHANG Rui. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters, 2020, 9(5): 586–590. doi: 10.1109/LWC.2019.2961656
    [21] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [22] TANG Yizheng, MA Ganggang, XIE Hailiang, et al. Joint transmit and reflective beamforming design for IRS-assisted multiuser MISO SWIPT systems[C]. ICC 2020 – 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
    [23] PAN Cunhua, REN Hong, WANG Kezhi, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719–1734. doi: 10.1109/JSAC.2020.3000802
    [24] LIU Jingxian, XIONG Ke, LU Yang, et al. Energy efficiency in secure IRS-aided SWIPT[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1884–1888. doi: 10.1109/LWC.2020.3006837
    [25] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 387–389.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  74
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-06
  • 修回日期:  2023-05-02
  • 网络出版日期:  2023-05-19
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回