高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法

徐勇军 徐然 周继华 陈量 黄东

徐勇军, 徐然, 周继华, 陈量, 黄东. 基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508
引用本文: 徐勇军, 徐然, 周继华, 陈量, 黄东. 基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508
XU Yongjun, XU Ran, ZHOU Jihua, CHEN Liang, HUANG Dong. Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508
Citation: XU Yongjun, XU Ran, ZHOU Jihua, CHEN Liang, HUANG Dong. Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508

基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法

doi: 10.11999/JEIT221508
基金项目: 国家自然科学基金(62271094),重庆市教委科学技术研究项目(KJZD-K202200601),重庆市自然科学基金创新发展联合基金重点项目(CSTB2022NSCQ-LZX0009)
详细信息
    作者简介:

    徐勇军:男,副教授,博士生导师,研究方向为反向散射通信、鲁棒资源分配

    徐然:男,硕士生,研究方向为反向散射、鲁棒资源分配

    周继华:男,研究员,博士生导师,研究方向为无线网络、资源分配等

    陈量:男,正高级工程师,研究方向为软件定义网络技术等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 中图分类号: TN929

Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers

Funds: The National Natural Science Foundation of China (62271094), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009)
  • 摘要: 针对反向散射通信系统信道估计不准、信息容易被窃听等问题,该文提出一种基于用户窃听的多用户-多输入单输出(MU-MISO)反向散射通信系统鲁棒资源分配算法,以提高系统传输鲁棒性与信息安全性。首先,考虑基站最大功率、时间分配、信道不确定性、能量收集和保密率等约束,建立一个MU-MISO的反向散射通信系统鲁棒资源分配问题。其次,基于非线性能量收集模型和有界球形信道不确定性模型,利用变量松弛法和S过程将原NP-hard问题转化为确定性问题,随后利用连续凸近似、半正定松弛与块坐标下降法将其转化为凸优化问题求解。仿真结果表明,与传统非鲁棒算法对比,所提算法具有较高的系统容量和较低的中断概率。
  • 图  1  反向散射通信物理层安全网络

    图  2  本文算法收敛性能

    图  3  最大发射功率和反射系数对吞吐量的影响

    图  4  信道不确定性与噪声功率对保密率的影响

    图  5  反射系数与信道不确定性对保密吞吐量的影响

    图  6  信道不确定性与反射系数对保密吞吐量的影响

    图  7  信道不确定性对中断概率的影响

    算法1 基于块坐标下降法的鲁棒资源分配迭代算法
     1. 初始化系统参数:$ K,\,M,\,{\beta _k},\,E_k^{\text{C}},\,\sigma _k^2,\,\sigma _e^2,\,T,\,\bar x_k^2,\,\bar x_k^3,\,\bar y_k^1,\,\bar \gamma _k^{\text{E}},\,\alpha _k^{\left( 0 \right)},\,{R^{{\text{sum}}(0)}} $;阈值:$r_k^{\min },\,{P^{\max }}$;估计误差上界:$\varepsilon $;收敛精度:$ \varpi $;
     初始化迭代次数:$l{\text{ = }}1$。
     2. Repeat
     3.  固定$ \alpha _k^{\left( 0 \right)} $,求解子问题1,获得$ {\boldsymbol{W}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{\left( l \right) * }} $。
         if $ {\boldsymbol{W}}_k^{\left( l \right) * } $满足$ \text{Rank}\left({{\boldsymbol{W}}}_{k}^{\left(l\right)\ast }\right)=1 $可以通过特征值分解获得最优波束向量,即${\boldsymbol{W}}_k^{\left( l \right) * }{\text{ = }}{\boldsymbol{w}}_k^{\left( l \right) * }{\boldsymbol{w}}_k^{\left( l \right) * {\text{H}}}$。
         else if ${\boldsymbol{W}}_k^{\left( l \right) * }$的秩大于1,可以通过高斯随机化获得最优向量。
     4.  固定${\boldsymbol{W}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{\left( l \right) * }}$求解子问题2,获得$ \alpha _k^{\left( l \right) * } $。
     5.  计算$ {R^{{\text{sum}}(l)}} $,并且更新迭代次数$l = l + 1$。
     6. Until $ \left| {{R^{{\text{sum}}(l)}} - {R^{{\text{sum}}(l - 1)}}} \right| \le \varpi $。
     7. Return $ {\boldsymbol{w}}_k^{{\text{opt}}}{\text{ = }}{\boldsymbol{w}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{{\text{opt}}}} = {{\boldsymbol{Z}}^{\left( l \right) * }},\,\alpha _k^{{\text{opt}}} = \alpha _k^{\left( l \right) * },\,{R^{{\text{sum}}}} = {R^{{\text{sum}}(l)}} $。
    下载: 导出CSV
  • [1] 徐勇军, 杨浩克, 叶迎晖, 等. 反向散射通信网络资源分配综述[J]. 物联网学报, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215

    XU Yongjun, YANG Haoke, YE Yinghui, et al. A survey on resource allocation in backscatter communication networks[J]. Chinese Journal on Internet of Things, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215
    [2] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964
    [3] LONG Ruizhe, LIANG Yingchang, GUO Huayan, et al. Symbiotic radio: A new communication paradigm for passive internet of things[J]. IEEE Internet of Things Journal, 2020, 7(2): 1350–1363. doi: 10.1109/JIOT.2019.2954678
    [4] WANG Pu, YAN Zheng, WANG Ning, et al. Resource allocation optimization for secure multidevice wirelessly powered backscatter communication with artificial noise[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7794–7809. doi: 10.1109/TWC.2022.3162137
    [5] YANG Haohang, YE Yinghui, and CHU Xiaoli. Max-min energy-efficient resource allocation for wireless powered backscatter networks[J]. IEEE Wireless Communications Letters, 2020, 9(5): 688–692. doi: 10.1109/LWC.2020.2965942
    [6] XIAO Sa, GUO Huayan, and LIANG Yinghchang. Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3222–3235. doi: 10.1109/TWC.2019.2912203
    [7] KE Feng, PENG Yiming, PENG Yingru, et al. Resource allocation for MIMO full-duplex backscatter assisted wireless-powered communication network with finite alphabet inputs[J]. IEEE Transactions on Communications, 2021, 69(2): 1275–1289. doi: 10.1109/TCOMM.2020.3035233
    [8] YE Yinghui, SHI Liqin, HU R Q, et al. Energy-efficient resource allocation for wirelessly powered backscatter communications[J]. IEEE Communications Letters, 2019, 23(8): 1418–1422. doi: 10.1109/LCOMM.2019.2920834
    [9] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094
    [10] ZHUANG Yuandong, LI Xi, JI Hong, et al. Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15216–15228. doi: 10.1109/TVT.2020.3037152
    [11] XU Yongjun and GUI Guan. Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1191–1195. doi: 10.1109/LWC.2020.2985010
    [12] YANG Gang, YUAN Dongdong, LIANG Yingchang, et al. Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered IoT[J]. IEEE Internet of Things Journal, 2019, 6(2): 2612–2625. doi: 10.1109/JIOT.2018.2872515
    [13] LI Dong. Backscatter communication via harvest-then-transmit relaying[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6843–6847. doi: 10.1109/TVT.2020.2991227
    [14] WANG Pu, YAN Zheng, and ZENG Kai. BCAuth: Physical layer enhanced authentication and attack tracing for backscatter communications[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2818–2834. doi: 10.1109/TIFS.2022.3195407
    [15] LI Xinrui, WANG Wei, ZHANG Miao, et al. Robust secure beamforming for SWIPT-aided relay systems with full-duplex receiver and imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1867–1878. doi: 10.1109/TVT.2019.2961449
    [16] LI Dong. Backscatter communication powered by selective relaying[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14037–14042. doi: 10.1109/TVT.2020.3029340
    [17] ZHOU Shaoqing, XU Wei, WANG Kezhi, et al. Ergodic rate analysis of cooperative ambient backscatter communication[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1679–1682. doi: 10.1109/LWC.2019.2936196
    [18] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
    [19] XU Yongjun, XIE Hao, LIANG Chengchao, et al. Robust secure energy-efficiency optimization in SWIPT-aided heterogeneous networks with a nonlinear energy-harvesting model[J]. IEEE Internet of Things Journal, 2021, 8(19): 14908–14919. doi: 10.1109/JIOT.2021.3072965
    [20] WANG Shaohang and WANG Baoyun. Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer[J]. IEEE Signal Processing Letters, 2015, 22(11): 2147–2151. doi: 10.1109/LSP.2015.2464791
    [21] WANG Feng, XU Jie, and DING Zhiguo. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems[J]. IEEE Transactions on Communications, 2019, 67(3): 2450–2463. doi: 10.1109/TCOMM.2018.2881725
    [22] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [23] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
    [24] BIBBY J. Axiomatisations of the average and a further generalisation of monotonic sequences[J]. Glasgow Mathematical Journal, 1974, 15(1): 63–65. doi: 10.1017/S0017089500002135
    [25] LU Yang, XIONG Ke, FAN Pingyi, et al. Coordinated beamforming with artificial noise for secure SWIPT under non-linear EH model: Centralized and distributed designs[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7): 1544–1563. doi: 10.1109/JSAC.2018.2824759
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  168
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-09-24
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回