高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于投票机制的暖通空调空气处理单元传感器故障诊断

严颖 蔡骏 吴奇 张欣 杨溢

严颖, 蔡骏, 吴奇, 张欣, 杨溢. 基于投票机制的暖通空调空气处理单元传感器故障诊断[J]. 电子与信息学报, 2024, 46(1): 258-266. doi: 10.11999/JEIT221506
引用本文: 严颖, 蔡骏, 吴奇, 张欣, 杨溢. 基于投票机制的暖通空调空气处理单元传感器故障诊断[J]. 电子与信息学报, 2024, 46(1): 258-266. doi: 10.11999/JEIT221506
YAN Ying, CAI Jun, WU Qi, ZHANG Xin, YANG Yi. Sensor Fault Diagnosis for Air Handling Unit of Heating Ventilation and Air Conditioning Based on Voting Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(1): 258-266. doi: 10.11999/JEIT221506
Citation: YAN Ying, CAI Jun, WU Qi, ZHANG Xin, YANG Yi. Sensor Fault Diagnosis for Air Handling Unit of Heating Ventilation and Air Conditioning Based on Voting Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(1): 258-266. doi: 10.11999/JEIT221506

基于投票机制的暖通空调空气处理单元传感器故障诊断

doi: 10.11999/JEIT221506
基金项目: 国家自然科学基金(52077105),江苏省自然科学基金(BK20211285)
详细信息
    作者简介:

    严颖:男,博士,讲师,研究方向为故障诊断与智能运维、脑电分析等

    蔡骏:男,教授,博士生导师,研究方向为电能变换与驱动控制、故障诊断与容错控制等

    吴奇:男,教授,博士生导师,研究方向为状态监测、故障诊断等

    张欣:男,教授,博士生导师,研究方向为电力电子、电力系统等

    杨溢:男,博士,讲师,研究方向为多旋翼无人机容错控制及复杂环境导航、容错控制等

    通讯作者:

    杨溢 yangyi@nuist.edu.cn

  • 中图分类号: TN911; TP183

Sensor Fault Diagnosis for Air Handling Unit of Heating Ventilation and Air Conditioning Based on Voting Mechanism

Funds: The National Natural Science Foundation of China (52077105), The Natural Science Foundation of Jiangsu Province (BK20211285)
  • 摘要: 现有暖通空调(HVAC)空气处理单元(AHU)的故障诊断研究往往是集中式的。少量的分布式方法大多需要求解大量耗时的优化问题,使得无法及时完成故障诊断。针对以上挑战,该文提出一种基于投票机制的分布式故障诊断方法。在该方法中,建立一个玻尔兹曼机来描述传感器网络,通过传感器之间的相互投票来确定玻尔兹曼机的边权值,基于边权值对玻尔兹曼机的状态也就是传感器的状态进行迭代,从而定位传感器的故障。设计了一种基于欧氏距离的投票策略确定投票值。开发了一种方法,通过在玻尔兹曼机中增加一个额外的节点来重置其权值矩阵,在将玻尔兹曼机对称化的同时,保持原来各传感器之间的投票关系,以保证玻尔兹曼机状态的迭代收敛。该方法不需要求解大量的优化问题,相较于当前的分布式方法计算量小。使用ASHRAE Project RP-1312提供的实际数据对所提方法进行验证。实验结果表明所提方法可以精确且高效地诊断出空气处理单元传感器的偏差故障和漂移故障。
  • 图  1  基于投票机制的故障诊断方法的灵感来源

    图  2  用玻尔兹曼机描述传感器的拓扑结构

    图  3  基于新型投票机制的分布式故障诊断方法的框图

    图  4  温度传感器的真实状态和状态估计

    图  5  流量传感器的真实状态和状态估计

    图  6  不同算法对不同故障进行诊断的雷达图

    图  7  不同算法的诊断精度

    表  1  基于ASHRAE Project RP-1312数据来模拟传感器故障

    传感器故障类型故障大小故障日期(年/月/日)
    Ta,mix偏差2 oC2007/8/25
    漂移0.3 oC/h2007/8/20
    Ta,sup偏差2 oC2007/8/26
    漂移0.3 oC/h2007/8/21
    ${\dot m_{{\rm{a}},\sup } }$偏差0.3 kg/s2007/8/27
    漂移0.03 kg/(s·h)2007/8/22
    ${\dot m_{{\rm{a}},rn} }$偏差0.3 kg/s2007/8/31
    漂移0.03 kg/(s·h)2007/8/23
    下载: 导出CSV
  • [1] KATIPAMULA S and BRAMBLEY M R. Methods for fault detection, diagnostics, and prognostics for building systems - a review, part I[J]. HVAC& R Research, 2005, 11(1): 3–25. doi: 10.1080/10789669.2005.10391123
    [2] LIAO Huanyue, CAI Wenjian, CHENG Fanyong, et al. An online data-driven fault diagnosis method for air handling units by rule and convolutional neural networks[J]. Sensors, 2021, 21(13): 4358. doi: 10.3390/s21134358
    [3] YAN Ying, CAI Jun, LI Tao, et al. Fault prognosis of HVAC air handling unit and its components using hidden-semi Markov model and statistical process control[J]. Energy and Buildings, 2021, 240: 110875. doi: 10.1016/j.enbuild.2021.110875
    [4] YAN Xiao’an and JIA Minping. Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 56–86. doi: 10.1016/j.ymssp.2018.12.022
    [5] 邵海东, 肖一鸣, 颜深. 仿真数据驱动的改进无监督域适应轴承故障诊断[J/OL]. 机械工程学报, 2022: 1–10. http://kns.cnki.net/kcms/detail/11.2187.TH.20220915.1441.002.html, 2022.

    SHAO Haidong, XIAO Yiming, and YAN Shen. Simulation data-driven enhanced unsupervised domain adaptation for bearing fault diagnosis[J/OL]. Journal of Mechanical Engineering, 2022: 1–10. http://kns.cnki.net/kcms/detail/11.2187.TH.20220915.1441.002.html, 2022.
    [6] 王路瑶, 吴斌, 杜志敏, 等. 基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J]. 化工学报, 2018, 69(S2): 252–259. doi: 10.11949/j.issn.0438-1157.20181084

    WANG Luyao, WU Bin, DU Zhimin, et al. Sensor fault detection and diagnosis for data center air conditioning system based on LSTM neural network[J]. CIESC Journal, 2018, 69(S2): 252–259. doi: 10.11949/j.issn.0438-1157.20181084
    [7] 邵海东, 颜深, 肖一鸣. 时变转速下基于改进图注意力网络的轴承半监督故障诊断[J/OL]. 电子与信息学报, 2022: 1–9. https://jeit.ac.cn/cn/article/doi/10.11999/JEIT220303, 2022.

    SHAO Haidong, YAN Shen, and XIAO Yiming. Semi-supervised bearing fault diagnosis using improved graph attention network under time-varying speeds[J/OL]. Journal of Electronics & Information Technology, 2022: 1–9. https://jeit.ac.cn/cn/article/doi/10.11999/JEIT220303, 2022.
    [8] LIU Jingjing, ZHANG Min, WANG Hai, et al. Sensor fault detection and diagnosis method for AHU using 1-D CNN and clustering analysis[J]. Computational Intelligence and Neuroscience, 2019, 2019: 5367217. doi: 10.1155/2019/5367217
    [9] WANG Zhuozheng, DONG Yingjie, LIU Wei, et al. A novel fault diagnosis approach for chillers based on 1-D convolutional neural network and gated recurrent unit[J]. Sensors, 2020, 20(9): 2458. doi: 10.3390/s20092458
    [10] REPPA V, PAPADOPOULOS P, POLYCARPOU M M, et al. A distributed architecture for HVAC sensor fault detection and isolation[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4): 1323–1337. doi: 10.1109/TCST.2014.2363629
    [11] SHAHNAZARI H, MHASKAR P, HOUSE J M, et al. Modeling and fault diagnosis design for HVAC systems using recurrent neural networks[J]. Computers & Chemical Engineering, 2019, 126: 189–203. doi: 10.1016/j.compchemeng.2019.04.011
    [12] WANG Shiqiang, XING Jianchun, JIANG Ziyan, et al. A novel sensors fault detection and self-correction method for HVAC systems using decentralized swarm intelligence algorithm[J]. International Journal of Refrigeration, 2019, 106: 54–65. doi: 10.1016/j.ijrefrig.2019.06.007
    [13] WANG Shiqiang, XING Jianchun, JIANG Ziyan, et al. A decentralized sensor fault detection and self-repair method for HVAC systems[J]. Building Services Engineering Research and Technology, 2018, 39(6): 667–678. doi: 10.1177/0143624418775881
    [14] FENG Bpwei, ZHOU Qizhen, XING Jianchun, et al. A fully distributed voting strategy for AHU fault detection and diagnosis based on a decentralized structure[J]. Energy Reports, 2022, 8: 390–404. doi: 10.1016/J.EGYR.2021.11.281
    [15] YAN Ying, LUH P B, and PATTIPATI K R. Fault diagnosis of HVAC air-handling systems considering fault propagation impacts among components[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2): 705–717. doi: 10.1109/TASE.2017.2669892
    [16] YAN Ying, CAI Jun, TANG Yun, et al. A decentralized Boltzmann-machine-based fault diagnosis method for sensors of air handling units in HVACs[J]. Journal of Building Engineering, 2022, 50: 104130. doi: 10.1016/j.jobe.2022.104130
    [17] ZHAO Xiaoli, YAO Jianyong, DENG Wenxiang, et al. Intelligent fault diagnosis of gearbox under variable working conditions with adaptive intraclass and interclass convolutional neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  121
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-14
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回