高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介质谐振器的薄导电板侧向回射增强设计

尚玉平 冯桂生 廖成

尚玉平, 冯桂生, 廖成. 基于介质谐振器的薄导电板侧向回射增强设计[J]. 电子与信息学报, 2024, 46(1): 353-361. doi: 10.11999/JEIT221479
引用本文: 尚玉平, 冯桂生, 廖成. 基于介质谐振器的薄导电板侧向回射增强设计[J]. 电子与信息学报, 2024, 46(1): 353-361. doi: 10.11999/JEIT221479
SHANG Yuping, FENG Guisheng, LIAO Cheng. Edge-On Backscattering Augmentation Design of Thin Conducting Plate Based on Dielectric Resonator[J]. Journal of Electronics & Information Technology, 2024, 46(1): 353-361. doi: 10.11999/JEIT221479
Citation: SHANG Yuping, FENG Guisheng, LIAO Cheng. Edge-On Backscattering Augmentation Design of Thin Conducting Plate Based on Dielectric Resonator[J]. Journal of Electronics & Information Technology, 2024, 46(1): 353-361. doi: 10.11999/JEIT221479

基于介质谐振器的薄导电板侧向回射增强设计

doi: 10.11999/JEIT221479
基金项目: 国家自然科学基金(61601379, 61771407)
详细信息
    作者简介:

    尚玉平:男,博士,副教授,硕士生导师,研究方向为电磁散射分析与调控等

    冯桂生:男,硕士生,研究方向为电磁散射分析与调控等

    廖成:男,博士,教授,博士生导师,研究方向为电磁散射与逆散射、天线理论与设计等

    通讯作者:

    尚玉平 shangyuping530@sina.com

  • 中图分类号: TN97

Edge-On Backscattering Augmentation Design of Thin Conducting Plate Based on Dielectric Resonator

Funds: The National Natural Science Foundation of China (61601379, 61771407)
  • 摘要: 该文提出了基于无源介质谐振器腔内磁偶极子谐振的准超方向性再辐射,旨在增强薄导电板受到平面电磁波侧向照射时的后向散射截面。在平面电磁波激励下,设计适当的长方介质体中可诱导产生具有磁偶极子再辐射特征的混合电磁谐振模式。以长方介质体为基本谐振单元,将两个相同的介质体沿入射波传播方向紧密级联以组成一个超单元。超单元的两个介质体中的磁场强度与电场强度矢量均呈现相反的方向且相近的幅度,接近等幅而反相的内部场分布使超单元类似一个二元准超方向性磁偶极子阵列,由此产生的准超方向性再辐射有效地贡献于后向散射截面增强。进一步,由镜像原理,将超单元剖面厚度减半并加载于薄导电板表面。结果表明,剖面厚度仅为0.078λ0的介质谐振器形成基于磁偶极子的准超方向性再辐射,在谐振频率处可显著修改薄导电板的侧向回射特性,进而在相对宽带宽角范围内对侧向入射波实现有效的后向散射截面增强。
  • 图  1  长方介质体的几何尺寸及其在9 GHz处的内部场分布

    图  2  长方介质体的共极化后向散射截面频率响应曲线以及9 GHz处双站散射方向图

    图  3  两种超单元的几何结构和尺寸示意图

    图  4  超单元的共极化后向散射截面以及9 GHz处基于磁偶极子的超单元内部场分布

    图  5  上下表面分别加载磁偶极子和电单极子超单元的薄导电板

    图  6  薄导电板上表面的磁偶极子超单元在9 GHz处的内部场分布

    图  7  上下表面加载有超单元的薄导电板散射截面仿真结果

    图  8  加载x向1维线阵的薄导电板

    图  9  加载x向1维线阵的薄导电板散射截面仿真结果

    图  10  加载y向1维线阵的薄导电板

    图  11  加载y向1维线阵的薄导电板散射截面仿真结果

    图  12  加载有磁偶极子超单元的铝板样件照片

    图  13  样件处于侧向照射下的后向散射截面仿真结果与实测结果

  • [1] SHANG Yuping and SHEN Zhongxiang. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2386–2396. doi: 10.1109/TAP.2017.2677949
    [2] 王思豪, 廖成, 尚玉平, 等. 基于有源超表面的导电板雷达截面增强捷变设计[J]. 强激光与粒子束, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331

    WANG Sihao, LIAO Cheng, SHANG Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331
    [3] LIPUMA D, MÉRIC S, and GILLARD R. RCS enhancement of flattened dihedral corner reflector using reflectarray approach[J]. Electronics Letters, 2013, 49(2): 152–154. doi: 10.1049/el.2012.4152
    [4] NIKOLIC N, KOT J S, and VINOGRADOV S. Scattering by a luneberg lens partially covered by a metallic cap[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(4): 549–563. doi: 10.1163/156939307780616856
    [5] ZENTGRAF T, LIU Yongmin, MIKKELSEN M H, et al. Plasmonic Luneburg and Eaton lenses[J]. Nature Nanotechnology, 2011, 6(3): 151–155. doi: 10.1038/nnano.2010.282
    [6] CHEN Lei, SHI Xiaowei, ZHANG Tianling, et al. Design of a dual-frequency retrodirective array[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 478–480. doi: 10.1109/LAWP.2010.2050855
    [7] QI Wenjun, YU Chen, DU Jianglong, et al. Broadband radar cross-section reduction using random chessboard coding metasurface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(10): e23306. doi: 10.1002/mmce.23306
    [8] LIU Jie, LI Jianying, and CHEN Zhining. Broadband polarization conversion metasurface for antenna RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(5): 3834–3839. doi: 10.1109/TAP.2021.3137412
    [9] 张国雯, 高军, 曹祥玉, 等. 基于三种反射型单元共享孔径的新型宽带低RCS反射屏设计[J]. 电子与信息学报, 2019, 41(12): 2925–2931. doi: 10.11999/JEITl81049

    ZHANG Guowen, GAO Jun, CAO Xiangyu, et al. Design of a novel broadband low RCS array based on three types of reflective cell shared aperture[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2925–2931. doi: 10.11999/JEITl81049
    [10] PESARAKLOO A and KHALAJ-AMIRHOSSEINI M. Wide-angle monostatic RCS enhancement using symmetrical periodic structures[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(15): 1987–2000. doi: 10.1080/09205071.2021.1927201
    [11] LI Xi, HUANG Qiulin, YANG Lin, et al. Research on conformal reflectarray for RCS enhancement in specific angular domain[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(5): e22604. doi: 10.1002/mmce.22604
    [12] SHANG Yuping, WANG Sihao, LIAO Cheng, et al. Dynamic augmentation of scattering cross-section by a conducting polycylinder coated with varactor-loaded metasurface[J]. IET Microwaves, Antennas & Propagation, 2021, 15(8): 835–842. doi: 10.1049/mia2.12094
    [13] CHEN Yan, HE Xiaoxiang, YANG Yang, et al. Dynamic RCS reduction performances of antenna array with coding metasurface[J]. International Journal of Antennas and Propagation, 2022: 4644566. doi: 10.1155/2022/4644566
    [14] SHANG Yuping, XIAO Shaoqiu, and SHEN Zhongxiang. Edge-on backscattering enhancement based on quasi-superdirective reradiation[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 539–542. doi: 10.1109/LAWP.2014.2368171
    [15] EKICI S and YAZGAN E. Dual mode dielectric resonator filter with a new source coupling slot approach[J]. Microwave and Optical Technology Letters, 2022, 64(10): 1707–1712. doi: 10.1002/mop.33356
    [16] YU Wei, XU Lin, ZHANG Xiuyin, et al. Dual-band dual-mode dielectric resonator filtering power divider with flexible output phase difference and power split ratio[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 190–199. doi: 10.1109/TMTT.2021.3113654
    [17] KREMER H I, LEUNG K W, and LEE M W K. Design of substrate-integrated dielectric resonator antenna with dielectric vias[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5205–5214. doi: 10.1109/TAP.2021.3060054
    [18] WANG Xiaohui, CHEN Fang, and SEMOUCHKINA E. Implementation of low scattering microwave cloaking by all-dielectric metamaterials[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(2): 63–65. doi: 10.1109/LMWC.2013.2238914
    [19] CAMPIONE S, BASILIO L I, WARNE L K, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces[J]. Optics Express, 2015, 23(3): 2293–2307. doi: 10.1364/OE.23.002293
    [20] VAN BLADEL J. The excitation of dielectric resonators of very high permittivity[J]. IEEE Transactions on Microwave Theory and Techniques, 1975, 23(2): 208–217. doi: 10.1109/TMTT.1975.1128529
    [21] STAUDE I, MIROSHNICHENKO A E, DECKER M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 7824–7832. doi: 10.1021/nn402736f
    [22] VAN DE GROEP J and POLMAN A. Designing dielectric resonators on substrates: Combining magnetic and electric resonances[J]. Optics Express, 2013, 21(22): 26285–26302. doi: 10.1364/OE.21.026285
    [23] SIKDAR D, CHENG Wenlong, and PREMARATNE M. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering[J]. Journal of Applied Physics, 2015, 117(8): 083101. doi: 10.1063/1.4907536
    [24] LIANG C S, STREATER D A, JIN J M, et al. A quantitative study of luneberg-lens reflectors[J]. IEEE Antennas and Propagation Magazine, 2005, 47(2): 30–42. doi: 10.1109/MAP.2005.1487776
    [25] OUNNAS B, SAUVIAC B, TAKAKURA Y, et al. Single and dual photonic jets and corresponding backscattering enhancement with tipped waveguides: Direct observation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5612–5618. doi: 10.1109/TAP.2015.2491328
  • 加载中
图(13)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  186
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-04-19
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回