高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于CMOS图像传感器的高速全差分两步式ADC设计方法

郭仲杰 王杨乐 许睿明 刘绥阳

郭仲杰, 王杨乐, 许睿明, 刘绥阳. 应用于CMOS图像传感器的高速全差分两步式ADC设计方法[J]. 电子与信息学报, 2023, 45(9): 3410-3419. doi: 10.11999/JEIT221420
引用本文: 郭仲杰, 王杨乐, 许睿明, 刘绥阳. 应用于CMOS图像传感器的高速全差分两步式ADC设计方法[J]. 电子与信息学报, 2023, 45(9): 3410-3419. doi: 10.11999/JEIT221420
GUO Zhongjie, WANG Yangle, XU Ruiming, LIU Suiyang. High-speed Fully Differential Two-step ADC Design Method for CMOS Image Sensor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3410-3419. doi: 10.11999/JEIT221420
Citation: GUO Zhongjie, WANG Yangle, XU Ruiming, LIU Suiyang. High-speed Fully Differential Two-step ADC Design Method for CMOS Image Sensor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3410-3419. doi: 10.11999/JEIT221420

应用于CMOS图像传感器的高速全差分两步式ADC设计方法

doi: 10.11999/JEIT221420
基金项目: 国家自然科学基金(62171367),陕西省重点研发计划(2021GY-060),陕西省创新能力支持项目(2022TD-39)
详细信息
    作者简介:

    郭仲杰:男,教授,研究方向为超大规模数模混合信号集成电路设计技术

    王杨乐:男,硕士生,研究方向为高性能CMOS图像传感器设计技术

    许睿明:男,硕士生,研究方向为高性能CMOS图像传感器设计技术

    刘绥阳:女,博士生,研究方向为高性能CMOS图像传感器设计技术

    通讯作者:

    郭仲杰 zjguo@xaut.edu.cn

  • 中图分类号: TN47

High-speed Fully Differential Two-step ADC Design Method for CMOS Image Sensor

Funds: The National Natural Science Foundation of China (62171367), The Key Research and Development Plan of Shaanxi Province (2021GY-060), Shaanxi Innovation Capability Support Project (2022TD-39)
  • 摘要: 由于传统的单斜式模数转换器(SS ADC)以及改进的各种架构串行两步式SS ADC普遍存在速度瓶颈问题,均无法满足工业界高帧率CMOS图像传感器的发展需求,该文提出一种应用于高帧率CMOS图像传感器的高速全差分两步式ADC设计方法。该ADC设计方法基于差动斜坡与时间数字转换(TDC)技术,将差动量化嵌套在两步式的量化中,形成了区别于串行量化的并行量化模式,不仅提升了数据量化的速率,而且保证了系统的一致性和鲁棒性;针对传统TDC技术与单斜式ADC的匹配性问题,提出了一种基于电平编码的TDC技术,在ADC量化的最后一个时钟周期内,在不提升系统时钟的情况下,完成时间数字转换,实现了更高精度的量化。该文基于55 nm 1P4M CMOS实验平台完成了所提方法的电路设计、版图设计和测试验证。在模拟电压3.3 V、数字电压1.2 V、时钟频率100 MHz、动态输入范围1.6 V的设计环境下,该文ADC设计精度为12 bit,转换时间仅有480 ns,列级功耗低至62 μW,DNL以最低有效位(LSB)计为+0.6/–0.6,INL以最低有效位(LSB)计为+1.2/–1.4,信噪失真比(SNDR)达到70.08 dB,与现有的先进单斜式ADC相比,ADC转换速度提高了52%以上,可以有效压缩行处理时间,为高帧率大面阵CMOS图像传感器的实现提供了有效的解决方案。
  • 图  1  CMOS图像传感器系统框架示意图

    图  2  两步式SS ADC量化示意图

    图  3  时间差值量化示意图

    图  4  传统时钟压缩型TDC编码原理示意图

    图  5  本文TDC电平编码原理示意图

    图  6  基于单斜式与电平编码TDC电路结构示意图

    图  7  基于差动斜坡与TDC的ADC结构示意图

    图  8  基于差动斜坡与TDC的ADC电路工作时序图

    图  9  CIS芯片整体仿真平台

    图  10  ADC整体版图设计

    图  11  ADC整体版图

    图  12  微分非线性(DNL)测试结果

    图  13  积分非线性(INL)测试结果

    图  14  信噪比分析

    表  1  本文设计方法与文献的对比结果

    文献[22]文献[23]文献[24]文献[1]本文
    工艺(nm)1305513055
    结构两步式两步式全并行两步式单斜式+TDC全差分两步式+TDC
    ADC 精度(bit)1212121212
    量化范围(V)1.21.4721.6
    转换时间10 μs6.38 μs1.28 μs1 μs480 ns
    DNL0.76/–0.8+1.34/–0.49+0.8/–0.8+1.1/–0.4+0.6/–0.6
    INL1.06/–0.84+2.44/–2.47+2.1/–3.5+5.8/–8.2+1.2/–1.4
    有效位数(bit)11.2511.3311.35
    功耗(μW)72112.54717762
    品质因数*( pJ/conv.-step)0.2960.1750.0230.0430.008
    *=功耗/(采样率×2有效位数)
    下载: 导出CSV
  • [1] LEVSKI D, WÄNY M, and CHOUBEY B. A 1-μs ramp time 12-bit column-parallel flash TDC-interpolated single-slope ADC with digital delay-element calibration[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(1): 54–67. doi: 10.1109/TCSI.2018.2846592
    [2] KAUR A, MISHRA D, and SARKAR M. A 12-bit, 2.5-bit/phase column-parallel cyclic ADC[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(1): 248–252. doi: 10.1109/TVLSI.2018.2871341
    [3] OKADA C, UEMURA K, HUNG L, et al. 7.6 a high-speed back-illuminated stacked CMOS image sensor with column-parallel kT/C-cancelling S&H and delta-sigma ADC[C] 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021: 116–118.
    [4] TANG Fang, CHEN D G, WANG Bo, et al. Low-power CMOS image sensor based on column-parallel single-slope/SAR quantization scheme[J]. IEEE Transactions on Electron Devices, 2013, 60(8): 2561–2566. doi: 10.1109/TED.2013.2268207
    [5] NIE Kaiming, ZHA Wanbin, SHI Xiaolin, et al. A single slope ADC with row-wise noise reduction technique for CMOS image sensor[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(9): 2873–2882. doi: 10.1109/TCSI.2020.2979321
    [6] HAM S H, HAN G, and LEE D M. Image sensor using auto-calibrated ramp signal for improved image quality and driving method thereof[P]. USA patent, 7679542, 2010.
    [7] LIANG J and JOHNS D A. A frequency-scalable 15-bit incremental ADC for low power sensor applications[C]. 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010: 2418–2421.
    [8] SAITO W, IIZUKA Y, KATO N, et al. A low noise and linearity improvement CMOS image sensor for surveillance camera with skew-relaxation local multiply circuit and on-chip testable ramp generator[C]. 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), Busan, Korea, 2021: 1–3.
    [9] PARK I, JO W, PARK C, et al. A 640×640 fully dynamic CMOS image sensor for always-on object recognition[C]. 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019: C214–C215.
    [10] PARK S Y and KIM H J. CMOS image sensor with two-step single-slope ADC using differential ramp generator[J]. IEEE Transactions on Electron Devices, 2021, 68(10): 4966–4971. doi: 10.1109/TED.2021.3102003
    [11] LYU Tao, YAO Suying, NIE Kaiming, et al. A 12-bit high-speed column-parallel two-step single-slope Analog-to-Digital Converter (ADC) for CMOS image sensors[J]. Sensors, 2014, 14(11): 21603–21625. doi: 10.3390/s141121603
    [12] CHEN H S, TSENG C J, CHEN Chengming, et al. A 34.3 dB SNDR, 2.3GS/s, Sub-radix pipeline ADC using incomplete settling technique with background radix detector[J]. Analog Integrated Circuits and Signal Processing, 2021, 107(1): 39–50. doi: 10.1007/s10470-021-01814-1
    [13] LEE K J, KIM C K, EOM J W, et al. Image sensor with analog-to-digital converter that generates a variable slope ramp signal[P]. USA patent, 6545624, 2003.
    [14] ZHANG Qihui, NING Ning, LI Jing, et al. A high area-efficiency 14-bit SAR ADC with hybrid capacitor DAC for array sensors[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 4396–4408. doi: 10.1109/TCSI.2020.2998473
    [15] SANTOS M, HORTA N, and GUILHERME J. An 8bit logarithmic AD converter using cross-coupled inverters and a time-to-digital converter[C]. 2016 12th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, 2016: 1–4.
    [16] 唐枋, 唐建国. 用于CMOS图像传感器的12位低功耗单斜坡模数转换器设计[J]. 电子学报, 2013, 41(2): 352–356.

    TANG Fang and TANG Jianguo. 12Bit low power single slope ADC design for CMOS image sensor[J] Acta Electronica Sinica, 2013, 41(2): 352–356.
    [17] 高静, 姚素英, 徐江涛, 等. 高速列并行10位模数转换电路的设计[J]. 天津大学学报, 2010, 43(6): 489–494. doi: 10.3969/j.issn.0493-2137.2010.06.004

    GAO Jing, YAO Suying, XU Jiangtao, et al. Design of high speed column-parallel 10-bit ADC[J]. Journal of Tianjin University, 2010, 43(6): 489–494. doi: 10.3969/j.issn.0493-2137.2010.06.004
    [18] PARK K, YEOM S, and KIM S Y. Ultra-low power CMOS image sensor with two-step logical shift algorithm-based correlated double sampling scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(11): 3718–3727. doi: 10.1109/TCSI.2020.3012980
    [19] 张倩, 郭仲杰, 余宁梅, 等. CMOS图像传感器列并行单斜式ADC回踢噪声自补偿方法[J]. 武汉大学学报(理学版), 2022, 68(5): 574–580. doi: 10.14188/j.1671-8836.2022.0030

    ZHANG Qian, GUO Zhongjie, YU Ningmei, et al. Self-compensation method for kickback noise of CMOS image sensor column parallel ramp ADC[J]. Journal of Wuhan University (Natural Science Edition), 2022, 68(5): 574–580. doi: 10.14188/j.1671-8836.2022.0030
    [20] 张鹤玖, 余宁梅, 吕楠, 等. 一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器[J]. 电子与信息学报, 2019, 41(6): 1466–1471. doi: 10.11999/JEIT180752

    ZHANG Hejiu, YU Ningmei, LÜ Nan, et al. A 10 bit fully differential dual slope analog-to-digital converter for time delay integration CMOS image sensors[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1466–1471. doi: 10.11999/JEIT180752
    [21] HINTON H, JANG H, WU Wenxuan, et al. A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters[C]. 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2022: 1–3,
    [22] ZHANG Qihui, NING Ning, LI Jing, et al. A 12-bit column-parallel two-step single-slope ADC with a foreground calibration for CMOS image sensors[J]. IEEE Access, 2020, 8: 172467–172480. doi: 10.1109/ACCESS.2020.3025153
    [23] LEE J, PARK H, SONG B, et al. High frame-rate VGA CMOS image sensor using non-memory capacitor two-step single-slope ADCs[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2015, 62(9): 2147–2155. doi: 10.1109/TCSI.2015.2451791
    [24] 郭仲杰, 许睿明, 程新齐, 等. 面向亿级CMOS图像传感器的高速全并行两步式ADC设计方法[J]. 电子学报, 待发表. doi: 10.12263/DZXB20220022.

    GUO Zhongjie, XU Ruiming, CHENG Xinqi, et al. Design method of high-speed fully parallel two-step ADC for CMOS image sensor[J]. Acta Electronica Sinica, To be published. doi: 10.12263/DZXB20220022.
    [25] MALASS I, UHRING W, LE NORMAND J P, et al. 10-ps Resolution hybrid time to digital converter in a 0.18 μm CMOS technology[C]. 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS), Trois-Rivieres, Canada, 2014: 105–108.
    [26] HUANG Huihua and SECHEN C. A 22mW 227Msps 11b self-tuning ADC based on time-to-digital conversion[C]. 2009 IEEE Dallas Circuits and Systems Workshop (DCAS), Richardson, USA, 2009: 1–4.
    [27] GUO Zhongjie, YU Ningmei, and WU Longsheng. A synchronous driving approach based on adaptive delay phase-locked loop for stitching CMOS image sensor[J]. IEICE Electronics Express, 2020, 17(3): 20190642. doi: 10.1587/elex.16.20190642
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  189
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 修回日期:  2023-05-25
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回