高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IRS辅助的NOMA无人机网络安全速率最大化算法

王正强 青思雨 万晓榆 樊自甫 徐勇军 多滨

王正强, 青思雨, 万晓榆, 樊自甫, 徐勇军, 多滨. IRS辅助的NOMA无人机网络安全速率最大化算法[J]. 电子与信息学报, 2023, 45(12): 4203-4210. doi: 10.11999/JEIT221189
引用本文: 王正强, 青思雨, 万晓榆, 樊自甫, 徐勇军, 多滨. IRS辅助的NOMA无人机网络安全速率最大化算法[J]. 电子与信息学报, 2023, 45(12): 4203-4210. doi: 10.11999/JEIT221189
WANG Zhengqiang, QING Siyu, WAN Xiaoyu, FAN Zifu, XU Yongjun, DUO Bin. Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4203-4210. doi: 10.11999/JEIT221189
Citation: WANG Zhengqiang, QING Siyu, WAN Xiaoyu, FAN Zifu, XU Yongjun, DUO Bin. Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4203-4210. doi: 10.11999/JEIT221189

IRS辅助的NOMA无人机网络安全速率最大化算法

doi: 10.11999/JEIT221189
基金项目: 国家自然科学基金(61701064, 62271094),四川省区域创新合作项目(2022YFQ0017),重庆市博士后研究项目特别资助(2021XM3082)
详细信息
    作者简介:

    王正强:男,副教授,研究方向为无人机通信、下一代无线通信

    青思雨:女,硕士生,研究方向为智能反射面通信、无人机通信

    万晓榆:男,教授,研究方向为下一代无线通信

    樊自甫:男,教授,研究方向为下一代无线通信

    徐勇军:男,副教授,研究方向为反向散射通信

    多滨:男,教授,研究方向为无人机通信

    通讯作者:

    王正强 wangzq@cqupt.edu.cn

  • 中图分类号: TN929.5

Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks

Funds: The National Natural Science Foundation of China (61701064, 62271094), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017), The Special Support for Chongqing Postdoctoral Research Project (2021XM3082)
  • 摘要: 该文研究了智能反射面(IRS)辅助基于非正交多址接入(NOMA)技术的无人机(UAV)网络中的安全传输。为了使系统安全速率最大化,该文提出联合优化无人机位置、串行干扰消除解码顺序、IRS反射矩阵和UAV发射功率的资源优化问题。由于优化问题是一个混合整数非凸优化问题,该文提出一种基于块坐标下降的迭代算法,将原问题分解为3个子问题,采用基于惩罚、半正定松弛和连续凸逼近的方法求解子问题。仿真表明,所提算法的系统安全速率优于没有IRS辅助的NOMA方案和没有IRS辅助的正交多址方案。
  • 图  1  系统模型

    图  2  安全速率随迭代次数变化曲线

    图  3  安全速率变化曲线

    算法1 基于BCD的安全速率最大化算法
     初始化: NK,$ \left\{ {{{\boldsymbol{q}}^{\left( 0 \right)}},{{\boldsymbol{A}}^{\left( 0 \right)}},{{\boldsymbol{\varTheta}} ^{\left( 0 \right)}},{{\boldsymbol{P}}^{\left( 0 \right)}}} \right\} $,迭代次数n=0,容忍误差$ \varepsilon $,最大迭代次数$ {n_{\max }} $
     REPEAT
       给定$ {{\boldsymbol{\varTheta}} ^{(n)}} $和$ {{\boldsymbol{P}}^{(n)}} $时,基于凸优化求解问题式(11)计算UAV位置和SIC解码顺序$ {{\boldsymbol{q}}^{(n + 1)}} $和$ {{\boldsymbol{A}}^{(n + 1)}} $
       给定$ {{\boldsymbol{q}}^{(n + 1)}} $、$ {{\boldsymbol{A}}^{(n + 1)}} $和$ {{\boldsymbol{P}}^{(n)}} $时,基于凸优化求解问题式(15)计算IRS反射矩阵$ {{\boldsymbol{\varTheta}} ^{(n + 1)}} $
       给定$ {{\boldsymbol{q}}^{(n + 1)}} $、$ {{\boldsymbol{A}}^{(n + 1)}} $和$ {{\boldsymbol{\varTheta}} ^{(n + 1)}} $时,基于凸优化求解问题式(18)计算UAV发射功率$ {{\boldsymbol{P}}^{\left( {n + 1} \right)}} $
       更新$ R_s^{(n + 1)} $,n=n+1
     UNTIL ${\rm{abs}}(R_s^{(n)} - R_s^{(n - 1)}) \le \varepsilon$或$ n \gt {n_{\max }} $
     输出: UAV位置$ {{\boldsymbol{q}}^{(n)}} $,SIC解码顺序$ {{\boldsymbol{A}}^{(n)}} $,IRS反射矩阵$ {{\boldsymbol{\varTheta}} ^{(n)}} $和UAV发射功率$ {{\boldsymbol{P}}^{(n)}} $
    下载: 导出CSV
  • [1] ZHANG Xing, ZHANG Yan, YU Rong, et al. Enhancing spectral-energy efficiency for LTE-advanced heterogeneous networks: A users social pattern perspective[J]. IEEE Wireless Communications, 2014, 21(2): 10–17. doi: 10.1109/MWC.2014.6812286
    [2] MATOLAK D W and SUN Ruoyu. Air–ground channel characterization for unmanned aircraft systems—part Ⅲ: The suburban and near-urban environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6607–6618. doi: 10.1109/TVT.2017.2659651
    [3] OUBBATI O S, ATIQUZZAMAN M, AHANGER T A, et al. Softwarization of UAV networks: A survey of applications and future trends[J]. IEEE Access, 2020, 8: 98073–98125. doi: 10.1109/ACCESS.2020.2994494
    [4] MARAQA O, RAJASEKARAN A S, AL-AHMADI S, et al. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2192–2235. doi: 10.1109/COMST.2020.3013514
    [5] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [6] WU Huici, LI Hanjie, WEI Zhiqing, et al. Secrecy performance analysis of air-to-ground communication with UAV jitter and multiple random walking eavesdroppers[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 572–584. doi: 10.1109/TVT.2020.3047082
    [7] WU Xuemeng, WEI Zaixue, CHENG Zhenqiao, et al. Joint optimization of UAV trajectory and user scheduling based on NOMA technology[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6.
    [8] PANG Xiaowei, LI Zan, CHEN Xiaoming, et al. UAV-aided NOMA networks with optimization of trajectory and precoding[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–6.
    [9] DUO Bin, LUO Junsong, LI Yilian, et al. Joint trajectory and power optimization for securing UAV communications against active eavesdropping[J]. China Communications, 2021, 18(1): 88–99. doi: 10.23919/JCC.2021.01.008
    [10] GAO Ying, TANG Hongying, LI Baoqing, et al. Joint trajectory and power design for UAV-enabled secure communications with No-Fly zone constraints[J]. IEEE Access, 2019, 7: 44459–44470. doi: 10.1109/ACCESS.2019.2908407
    [11] MU Xidong, LIU Yuanwei, GUO Li, et al. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6884–6898. doi: 10.1109/TWC.2020.3006915
    [12] ZUO Jiakuo, LIU Yuanwei, BASAR E, et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020, 24(11): 2632–2636. doi: 10.1109/LCOMM.2020.3009158
    [13] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
    [14] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [15] FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
    [16] LI Sixian, DUO Bin, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6402–6417. doi: 10.1109/TWC.2021.3073746
    [17] MU Xidong, LIU Yuanwei, GUO Li, et al. Intelligent reflecting surface enhanced multi-UAV NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3051–3066. doi: 10.1109/JSAC.2021.3088679
    [18] HUA Meng, YANG Luxi, WU Qingqing, et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission[J]. IEEE Transactions on Communications, 2020, 68(9): 5908–5923. doi: 10.1109/TCOMM.2020.3003662
    [19] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–89.
    [20] LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019–2033. doi: 10.1109/TWC.2021.3108901
    [21] MAO Sun, LENG Supeng, HU Jie, et al. Power minimization resource allocation for underlay MISO-NOMA SWIPT systems[J]. IEEE Access, 2019, 7: 17247–17255. doi: 10.1109/ACCESS.2019.2892321
    [22] LI Dong. Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[J]. IEEE Communications Letters, 2020, 24(8): 1646–1650. doi: 10.1109/LCOMM.2020.2997027
    [23] LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  228
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-20
  • 网络出版日期:  2022-12-23
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回