[1] |
ZHANG Xing, ZHANG Yan, YU Rong, et al. Enhancing spectral-energy efficiency for LTE-advanced heterogeneous networks: A users social pattern perspective[J]. IEEE Wireless Communications, 2014, 21(2): 10–17. doi: 10.1109/MWC.2014.6812286
|
[2] |
MATOLAK D W and SUN Ruoyu. Air–ground channel characterization for unmanned aircraft systems—part Ⅲ: The suburban and near-urban environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6607–6618. doi: 10.1109/TVT.2017.2659651
|
[3] |
OUBBATI O S, ATIQUZZAMAN M, AHANGER T A, et al. Softwarization of UAV networks: A survey of applications and future trends[J]. IEEE Access, 2020, 8: 98073–98125. doi: 10.1109/ACCESS.2020.2994494
|
[4] |
MARAQA O, RAJASEKARAN A S, AL-AHMADI S, et al. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2192–2235. doi: 10.1109/COMST.2020.3013514
|
[5] |
WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
|
[6] |
WU Huici, LI Hanjie, WEI Zhiqing, et al. Secrecy performance analysis of air-to-ground communication with UAV jitter and multiple random walking eavesdroppers[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 572–584. doi: 10.1109/TVT.2020.3047082
|
[7] |
WU Xuemeng, WEI Zaixue, CHENG Zhenqiao, et al. Joint optimization of UAV trajectory and user scheduling based on NOMA technology[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6.
|
[8] |
PANG Xiaowei, LI Zan, CHEN Xiaoming, et al. UAV-aided NOMA networks with optimization of trajectory and precoding[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–6.
|
[9] |
DUO Bin, LUO Junsong, LI Yilian, et al. Joint trajectory and power optimization for securing UAV communications against active eavesdropping[J]. China Communications, 2021, 18(1): 88–99. doi: 10.23919/JCC.2021.01.008
|
[10] |
GAO Ying, TANG Hongying, LI Baoqing, et al. Joint trajectory and power design for UAV-enabled secure communications with No-Fly zone constraints[J]. IEEE Access, 2019, 7: 44459–44470. doi: 10.1109/ACCESS.2019.2908407
|
[11] |
MU Xidong, LIU Yuanwei, GUO Li, et al. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6884–6898. doi: 10.1109/TWC.2020.3006915
|
[12] |
ZUO Jiakuo, LIU Yuanwei, BASAR E, et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020, 24(11): 2632–2636. doi: 10.1109/LCOMM.2020.3009158
|
[13] |
GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
|
[14] |
CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
|
[15] |
FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
|
[16] |
LI Sixian, DUO Bin, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6402–6417. doi: 10.1109/TWC.2021.3073746
|
[17] |
MU Xidong, LIU Yuanwei, GUO Li, et al. Intelligent reflecting surface enhanced multi-UAV NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3051–3066. doi: 10.1109/JSAC.2021.3088679
|
[18] |
HUA Meng, YANG Luxi, WU Qingqing, et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission[J]. IEEE Transactions on Communications, 2020, 68(9): 5908–5923. doi: 10.1109/TCOMM.2020.3003662
|
[19] |
BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–89.
|
[20] |
LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019–2033. doi: 10.1109/TWC.2021.3108901
|
[21] |
MAO Sun, LENG Supeng, HU Jie, et al. Power minimization resource allocation for underlay MISO-NOMA SWIPT systems[J]. IEEE Access, 2019, 7: 17247–17255. doi: 10.1109/ACCESS.2019.2892321
|
[22] |
LI Dong. Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[J]. IEEE Communications Letters, 2020, 24(8): 1646–1650. doi: 10.1109/LCOMM.2020.2997027
|
[23] |
LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544
|