IRS辅助的NOMA无人机网络安全速率最大化算法

王正强*¹ 青思雨¹ 万晓榆¹ 樊自甫¹ 徐勇军¹ 多 滨² ¹(重庆邮电大学通信与信息工程学院 重庆 400065) ²(成都理工大学计算机与网络安全学院 成都 610059)

摘 要: 该文研究了智能反射面(IRS)辅助基于非正交多址接入(NOMA)技术的无人机(UAV)网络中的安全传输。为了使系统安全速率最大化,该文提出联合优化无人机位置、串行干扰消除解码顺序、IRS反射矩阵和 UAV发射功率的资源优化问题。由于优化问题是一个混合整数非凸优化问题,该文提出一种基于块坐标下降的迭 代算法,将原问题分解为3个子问题,采用基于惩罚、半正定松弛和连续凸逼近的方法求解子问题。仿真表明, 所提算法的系统安全速率优于没有IRS辅助的NOMA方案和没有IRS辅助的正交多址方案。 关键词:智能反射面;无人机;非正交多址接入;安全速率最大化;凸优化

中图分类号: TN929.5 文献标识码: A 文章编号: 1009-5896(2023)12-4203-08 DOI: 10.11999/JEIT221189

Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks

WANG Zhengqiang^① QING Siyu^① WAN Xiaoyu^① FAN Zifu^① XU Yongjun^① DUO Bin^②

^①(School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

²(College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China)

Abstract: In this paper, secure transmission in Intelligent Reflecting Surface (IRS) assisted Unmanned Aerial Vehicle (UAV) networks based on Non-Orthogonal Multiple Access (NOMA) is investigated. A joint placement and transmit power of UAV, successive interference cancellation decoding orders, and reflecting matrix of IRS optimization problem is formulated to maximize the secrecy rate. Since the problem is mixed-integer non-convex and challenging to solve, a block coordinate descent based iterative algorithm is developed. The original problem is decomposed into three subproblems, which are solved by exploiting the penalty-based method, the semidefinite relaxation technique, and the successive convex approximation technique. Simulation results demonstrate that the security rate of the proposed scheme is better than the scheme without IRS assisted NOMA network and the scheme without IRS assisted orthogonal multiple access network.

Key words: Intelligent Reflecting Surface (IRS); Unmanned Aerial Vehicle (UAV); Non-Orthogonal Multiple Access (NOMA); Secrecy rate maximization; Convex optimization

1 引言

随着制造技术的快速发展和成本的不断降低,

无人机(Unmanned Aerial Vehicle, UAV)因其在民 用领域的潜在用途而受到极大关注。在面对用户接 入数量激增造成的地面基站(Base Station, BS)过 载,或紧急救灾区基站严重不足等问题时,无人机 被认为是解决这一问题的可行前景方案^[1],将基站 搭载到可移动的无人机上协助地面基站通信,可快 速恢复瘫痪的通信服务并有效提高网络覆盖。无人 机通信与传统的地面通信相比,一方面,空对地信 道有很高的概率被视距(Line of Sight, LoS)链路所 主导^[2],这有助于建立高数据速率和可靠的传输。 另一方面,无人机的移动性是可控的,可以利用它

收稿日期: 2022-09-13; 改回日期: 2022-12-08; 网络出版: 2022-12-23 *通信作者: 王正强 wangzq@cqupt.edu.cn

基金项目:国家自然科学基金(61701064,62271094),四川省区域 创新合作项目(2022YFQ0017),重庆市博士后研究项目特别资助 (2021XM3082)

Foundation Items: The National Natural Science Foundation of China (61701064, 62271094), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017), The Special Support for Chongqing Postdoctoral Research Project (2021XM3082)

来提高通信的性能。

对于B5G(Beyond-5G)网络,在UAV通信的应 用过程中,安装在UAV上的基站通常需要同时为 大量具有严格通信要求的地面用户提供服务^[3]。非 正交多址接入(Non-Orthogonal Multiple Access, NOMA)技术允许多个用户同时复用同一资源块, 可支持大规模用户连接^[4]。NOMA被认为是将UAV 整合到B5G网络中的一个有前途的候选方案。

近年来,智能反射面(Intelligent Reflecting Surface, IRS)因其在实现智能可控的无线传播环境 中的重要作用而备受关注^[5],将IRS引入到无人机 通信系统可以进一步提高通信质量。然而,无线通 信的广播特性所带来的安全问题依旧存在,无人机 空对地视距信道的优点反而使得无人机发送的信号 更容易被地面窃听者所截获^[6]。

NOMA技术通过对功率域的复用来提高频谱 效率,增加系统容量。NOMA传输中,用户间的 串行干扰消除(Successive Interference Cancellation, SIC)解码顺序由信道条件决定,可以利用 UAV的移动性或调整IRS反射矩阵,来改变用户的 信道条件。目前已经有很多UAV和IRS的研究,文 献[7–10]考虑的是基于NOMA技术的无人机辅助网 络。文献[11–14]考虑的是基于NOMA技术的IRS辅 助网络。文献[15–17]研究了IRS辅助无人机网络, 但文献[15,16]考虑的是基于时分多址(Time Division Multiple Access, TDMA)协议的网络,且只考 虑了单个用户的情况,文献[17]研究的是基于NOMA 的网络最大化和速率问题。然而,当前文献较少研 究IRS辅助的NOMA无人机网络的安全问题。

本文主要的研究工作如下:

(1)本文提出了一种IRS辅助的无人机网络的下行NOMA多用户通信场景,在存在单个窃听者的情况下,联合优化UAV的位置、SIC解码顺序、UAV发射功率和IRS反射矩阵来最大化系统安全速率。

(2)本文提出了基于块坐标下降(Block Coordinate Descent, BCD)的迭代算法,将原始优化 问题分解为3个子问题进行交替优化求解。针对第 1个子问题,即UAV位置和SIC解码顺序的优化问 题,采用基于惩罚的方法和连续凸逼近(Successive Convex Approximation, SCA)方法进行求解。针 对第2个子问题,即IRS反射矩阵的优化问题,采 用半正定松弛(Semidefinite Relaxation, SDR)和 SCA方法进行求解。针对第3个子问题,即UAV发 射功率的优化问题,采用SCA方法进行求解。

(3)仿真结果表明,相比于基准方案,本文所提的IRS辅助NOMA无人机方案能提高系统安全速率。

2 系统模型

本文考虑一种IRS辅助的无人机网络的下行 NOMA通信场景。系统模型如图1所示,假设系统 中UAV作为BS,在固定高度*H*飞行,IRS被部署在 建筑物上,由*N*个反射元件组成,地面有*K*个用户 (User)和一个窃听者,UAV、用户和窃听者都配备 了单根天线。建立3维笛卡儿坐标系,UAV的坐标 为q = (x, y, H), IRS的坐标为 $r = (x_r, y_r, z_r)$,用 户 U_k 的坐标 $w_{u,k} = (x_k, y_k, 0)$,窃听者 U_e 的坐标 $w_e = (x_e, y_e, 0)$ 。UAV与 U_k 之间的信道为 $h_{ak} \in \mathbb{C}^{1\times 1}$, UAV与 U_e 之间的信道是 $h_{ae} \in \mathbb{C}^{1\times 1}$,UAV与IRS之 间的信道为 $G \in \mathbb{C}^{N\times 1}$,IRS与 U_k 之间的信道为 $g_{re} \in \mathbb{C}^{N\times 1}$, IRS的反射矩阵为 $\Theta = \text{diag}\{e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_N}\} \in \mathbb{C}^{N\times N}$,其中 $\theta_n \in [0, 2\pi), n = 1, 2, \dots, N$ 。

假设信道*h_{ak}*, *h_{ae}*, *g_{rk}以及<i>g_{re}*遵循莱斯信道模型,表示为^[18]

$$h_{ak} = \sqrt{\frac{\rho_0}{\|\boldsymbol{q} - \boldsymbol{w}_{u,k}\|^{\beta_0}}} \left(\sqrt{\frac{R}{R+1}} \overline{h}_{ak} + \sqrt{\frac{1}{R+1}} \widetilde{h}_{ak} \right)$$
(1a)

$$h_{ae} = \sqrt{\frac{\rho_0}{\|\boldsymbol{q} - \boldsymbol{w}_e\|^{\beta_0}}} \left(\sqrt{\frac{R}{R+1}} \overline{h}_{ae} + \sqrt{\frac{1}{R+1}} \widetilde{h}_{ae} \right)$$
(1b)

$$\boldsymbol{g}_{rk} = \sqrt{\frac{\rho_0}{\|r - \boldsymbol{w}_{u,k}\|^{\beta_0}}} \left(\sqrt{\frac{R}{R+1}} \boldsymbol{\overline{g}}_{rk} + \sqrt{\frac{1}{R+1}} \boldsymbol{\widetilde{g}}_{rk} \right)$$
(1c)

$$\boldsymbol{g}_{re} = \sqrt{\frac{\rho_0}{\|r - \boldsymbol{w}_e\|^{\beta_0}}} \left(\sqrt{\frac{R}{R+1}} \boldsymbol{\overline{g}}_{re} + \sqrt{\frac{1}{R+1}} \boldsymbol{\widetilde{g}}_{re} \right)$$
(1d)

其中, ρ_0 表示参考距离1 m处的路径损耗, β_0 表示 路径衰落指数, *R*表示莱斯因子, \overline{h}_{ak} , \overline{h}_{ae} , \overline{g}_{rk} , \overline{g}_{re} 表示LoS分量, \widetilde{h}_{ak} , \widetilde{h}_{ae} , \widetilde{g}_{rk} , \widetilde{g}_{re} 表示非视

距(Non Line of Sight, NLoS)分量。对于IRS考虑 用均匀线阵模型, \bar{g}_{rk} 和 \bar{g}_{re} 分别为^[17]

$$\overline{\boldsymbol{g}}_{rk} = \left[1, \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda}d\cos\phi_k}, \cdots, \mathrm{e}^{-\mathrm{j}\frac{2\pi(N-1)}{\lambda}d\cos\phi_k}\right]^{\mathrm{T}} \quad (1\mathrm{e})$$

$$\overline{\boldsymbol{g}}_{re} = \left[1, \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda}d\cos\phi_{\mathrm{e}}}, \cdots, \mathrm{e}^{-\mathrm{j}\frac{2\pi}{\lambda}(N-1)d\cos\phi_{\mathrm{e}}}\right]^{\mathrm{T}} \qquad (1\mathrm{f})$$

其中, λ 为载波波长, d为IRS单元间距, $\cos \phi_k = \frac{x_k - x_r}{\|\boldsymbol{w}_{u,k} - \boldsymbol{r}\|}$, $\cos \phi_e = \frac{x_e - x_r}{\|\boldsymbol{w}_e - \boldsymbol{r}\|}$ 。由于IRS布置在建 筑物上, 具有一定高度, 对UAV-IRS信道, 只考 虑 L o S 信 道^[17], \boldsymbol{G} 可表示为 $\boldsymbol{G} = \sqrt{\frac{\rho_0}{\|\boldsymbol{q} - \boldsymbol{r}\|^2}}$ $\overline{\boldsymbol{G}} = \sqrt{\frac{\rho_0}{\|\boldsymbol{q} - \boldsymbol{r}\|^2}} \Big[1, e^{-j\frac{2\pi}{\lambda}d\cos\varphi}, \dots, e^{-j\frac{2\pi(N-1)}{\lambda}d\cos\varphi} \Big]^{\mathrm{T}}$, 其中 $\cos \varphi = \frac{x_r - x}{\|\boldsymbol{r} - \boldsymbol{q}\|}$ 。

根据NOMA协议,用户采用SIC技术来消除干扰。引入变量 $\alpha_{i,j} \in \{0,1\}, \forall i \neq j$,当 $\alpha_{i,j} = 1$,表示用户 U_i 解码用户 U_j 。令 $c_k = |h_{ak} + g_{rk}^{\mathrm{H}}\Theta G|^2$, $\alpha_{i,j}$ 定义为

$$\alpha_{i,j} = \begin{cases} 1, c_i \ge c_j \\ 0, c_i < c_j \end{cases}$$
(2a)

$$\alpha_{i,j} + \alpha_{j,i} = 1 \tag{2b}$$

$$\alpha_{i,j}\alpha_{j,k} \le \alpha_{i,k} \tag{2c}$$

$$\alpha_{i,j} = \begin{cases} 1, \|\boldsymbol{q} - \boldsymbol{w}_{u,i}\| \le \|\boldsymbol{q} - \boldsymbol{w}_{u,j}\| \\ 0, \|\boldsymbol{q} - \boldsymbol{w}_{u,i}\| > \|\boldsymbol{q} - \boldsymbol{w}_{u,j}\| \end{cases}$$
(3)

由文献[18]中定理1,UAV与用户U_k之间以及 与窃听者U_e之间的期望信道增益分别为

$$\mathbb{E}\left[c_{k}\right] \triangleq \eta_{k} = \left|\widehat{h}_{ak} + \widehat{g}_{rk}^{\mathrm{H}} \Theta G\right|^{2} + \frac{\rho_{0} - Z}{\left\|\boldsymbol{q} - \boldsymbol{w}_{u,k}\right\|^{\beta_{0}}} + \frac{t_{k}}{\left\|\boldsymbol{q} - \boldsymbol{r}\right\|^{2}} \tag{4a}$$

$$\mathbb{E}\left[c_{k}\right] \triangleq \boldsymbol{w}_{k} = \left|\widehat{h}_{u} + \widehat{g}_{rk}^{\mathrm{H}} \Theta G\right|^{2} + \frac{\rho_{0} - Z}{\left(4a\right)}$$

$$\mathbb{E}\left[c_{\mathrm{e}}\right] \triangleq \eta_{\mathrm{e}} = \left| \dot{h}_{a\mathrm{e}} + \hat{\boldsymbol{g}}_{r\mathrm{e}}^{\mathrm{H}} \boldsymbol{\Theta} \boldsymbol{G} \right| + \frac{\rho_{0}}{\|\boldsymbol{q} - \boldsymbol{w}_{\mathrm{e}}\|^{\beta_{0}}} + \frac{\iota_{\mathrm{e}}}{\|\boldsymbol{q} - \boldsymbol{r}\|^{2}} \tag{4b}$$

其中,
$$\hat{h}_{ak} = \sqrt{\frac{Z}{\|\boldsymbol{q} - \boldsymbol{w}_{u,k}\|^{\beta_0}}} \overline{h}_{ak}, \hat{\boldsymbol{g}}_{rk}^{\mathrm{H}} = \sqrt{\frac{Z}{\|\boldsymbol{r} - \boldsymbol{w}_{u,k}\|^{\beta_0}}}$$

 $\overline{\boldsymbol{g}}_{rk}$, $t_k = \frac{N\rho_0(\rho_0 - Z)}{\|\boldsymbol{r} - \boldsymbol{w}_{u,k}\|^{\beta_0}}$, $Z = \frac{R\rho_0}{R+1}$, $c_{\mathrm{e}} = |h_{a\mathrm{e}} + g_{r\mathrm{e}}^{\mathrm{H}}\boldsymbol{\Theta}\boldsymbol{G}|^2, \hat{h}_{a\mathrm{e}} = \sqrt{\frac{Z}{\|\boldsymbol{q} - \boldsymbol{w}_{\mathrm{e}}\|^{\beta_0}}} \overline{h}_{a\mathrm{e}} \hat{\boldsymbol{g}}_{r\mathrm{e}}^{\mathrm{H}} = \sqrt{\frac{Z}{\|\boldsymbol{r} - \boldsymbol{w}_{\mathrm{e}}\|^{\beta_0}}} \overline{\boldsymbol{g}}_{r\mathrm{e}}^{\mathrm{H}}$
 $t_{\mathrm{e}} = \frac{N\rho_0(\rho_0 - Z)}{\|\boldsymbol{r} - \boldsymbol{w}_{\mathrm{e}}\|^{\beta_0}}^{\circ}$

UAV发送给地面用户的信号为 $\sum_{k=1}^{K} \sqrt{p_k} s_k$, 其中 p_k 是UAV分配给用户 U_k 的发射功率, s_k 是 UAV发送给用户 U_k 的信号,满足 $\mathbb{E}\left\{ |s_k|^2 \right\} = 1$, 用 户 U_k 和 窃 听 者 U_e 接收 到 的 信 号 分 别 表 示 为 $y_k = (h_{ak} + g_{rk}^{\mathrm{H}} \Theta G) \sum_{k=1}^{K} \sqrt{p_k} s_k + n_k, \quad y_e = (h_{ae} + g_{re}^{\mathrm{H}} \Theta G) \sum_{k=1}^{K} \sqrt{p_k} s_k + n_e, \quad 其 中 n_k \ln_e$ 表 示 均 值 为 0, 方 差 为 σ^2 的 加 性 高 斯 白 噪 声 。 用 户 U_k 的 速 率 为

$$\begin{split} R_{u,k} &= \log_2 \left(1 + \frac{\eta_k p_k}{\sum_{i=1, i \neq k}^K \alpha_{i,k} \eta_k p_i + \sigma^2} \right), \\ \mathfrak{S} \quad \mathfrak{M} \quad \mathring{B} \quad U_e \quad \mathfrak{S} \quad \mathfrak{M} \quad \mathring{P} \quad U_k \quad \mathfrak{N} \quad \mathring{x} \quad \mathring{x} \quad \mathfrak{N} \\ R_{e,k} &= \log_2 \left(1 + \frac{\eta_e p_k}{\sum_{i=1, i \neq k}^K \eta_e p_i + \sigma^2} \right), \quad \mathfrak{R} \quad \mathring{P} \quad U_k \quad \mathfrak{N} \\ \mathfrak{F} \\ \mathfrak{F}$$

以最大化系统安全速率为目标,系统的资源优 化问题可以表示为

$$\max_{q,A,\Theta,P} R_s = \sum_{k=1}^{K} (R_{u,k} - R_{e,k})$$
s.t. C1a: $\theta_n \in [0, 2\pi), \forall n$
C1b: $p_i \ge 0, \forall i$
C1c: $\sum_{i=1}^{K} p_i \le P_{\max}$
 $\vec{\chi}(2b), \vec{\chi}(2c), \vec{\chi}(3)$

$$(5)$$

其中, $P = \{p_i, \forall i\}$, $A = \{\alpha_{i,j}, \forall i \neq j\}$, 目标函数 将[·]⁺省略的原因是, $R_{s,k}$ 至少为0。式(5)是一个 混合整数非凸优化问题,考虑对式(5)基于BCD方 法进行迭代求解。

3 算法优化

基于BCD,将式(5)分为3个子问题,即UAV 位置和SIC解码顺序优化、IRS反射矩阵优化、 UAV发射功率优化。

3.1 UAV位置和SIC解码顺序优化

对于给定的IRS反射矩阵 Θ 和UAV发射功率 **P**,联合优化UAV的位置q和SIC解码顺序**A**,优 化问题如式(6)所示。

$$\max_{a,A} R_s$$
, s.t. $\vec{\mathbf{x}}(2\mathbf{b}), \ \vec{\mathbf{x}}(2\mathbf{c}), \ \vec{\mathbf{x}}(3)$ (6)

式(6)仍是一个混合整数非凸优化问题。

令 u_k 为UAV与用户 U_k 距离的上界, l_e 为UAV与窃听者 U_e 距离的下界, u_r 表示UAV与IRS距离的上界, l_r 表示UAV与IRS距离的下界,满足这些约束: $u_k \ge ||\mathbf{q} - \mathbf{w}_{u,k}||$, $||\mathbf{q} - \mathbf{w}_e|| \ge l_e$, $u_r \ge ||\mathbf{q} - \mathbf{r}||$, $||\mathbf{q} - \mathbf{r}|| \ge l_r$ 。

将 η_k 的下限表示为 $\underline{\eta}_k = \rho_0(u_k)^{-\beta_0} + A_k(u_r)^{-2} + B_k(u_k)^{-\beta_0/2}(u_r)^{-1}, \eta_e$ 的上限表示为 $\overline{\eta}_e = \rho_0(l_e)^{-\beta_0} + B_k(u_k)^{-\beta_0/2}(u_r)^{-1}$

$$0 < \alpha_{i,j} < 1, \quad \forall i \neq j \tag{7b}$$

$$0 \ge \alpha_{i,j} \ge 1$$
, $vv \neq j$

约束式(7a)和式(7b)共同保证 $\alpha_{i,j}$ 为0或1。

式(7a)不是且无法转换为凸集,式(7a)作为惩罚项写入式(6)的目标函数,重写为式(8)。

$$\begin{aligned} \max_{q,A,\chi} \sum_{k=1}^{K} \left[\log_2 \left(1 + \frac{p_k}{W_k} \right) - \log_2 \left(1 + \frac{p_k}{W_{e,k}} \right) \right] \\ &+ \xi \sum_{j=1}^{K} \sum_{i \neq j}^{K} (\alpha_{i,j} - (\alpha_{i,j})^2) \\ \text{s.t. C2a: } W_k \ge \sum_{i=1, i \neq k}^{K} \alpha_{i,k} p_i + \frac{\sigma^2}{\underline{\eta}_k} \\ \text{C2b: } W_{e,k} \le \sum_{i=1, i \neq k}^{K} p_i + \frac{\sigma^2}{\overline{\eta}_e} \\ \text{C2c: } \underline{\eta}_k \le \rho_0(u_k)^{-\beta_0} + A_k(u_r)^{-2} \\ &+ B_k(u_k)^{-\beta_0/2}(u_r)^{-1} \\ \text{C2d: } \overline{\eta}_e \ge \rho_0(l_e)^{-\beta_0} + C_e(l_r)^{-2} + D_e(l_e)^{-\beta_0/2}(l_r)^{-2} \\ \text{C2e: } u_k \ge \| q - \boldsymbol{w}_{u,k} \| \\ \text{C2f: } \| q - \boldsymbol{w}_e \| \ge l_e \\ \text{C2g: } u_r \ge \| q - r \| \\ \text{C2h: } \| q - r \| \ge l_r \\ \vec{\pi}_i(2b), \ \vec{\pi}_i(2c), \ \vec{\pi}_i(7b) \end{aligned}$$
(8)

其中, $\chi = \{W_k, W_{e,k}, \underline{\eta}_k, \overline{\eta}_e, u_k, l_e, u_r, l_r\}$ 为辅助变量 的集合, $\xi >> 0$ 是惩罚系数, $\alpha_{i,j} - (\alpha_{i,j})^2$ 的值的 范围是 $[0, 1/4], \exists \xi \to \infty$ 时, $\xi \sum_{j=1}^{K} \sum_{i=1, i \neq j}^{K} (\alpha_{i,j} - (\alpha_{i,j})^2)$ 趋近于0,此时式(6)和式(8)是等价的^[17]。 但式(8)仍是个非凸优化问题。下面采用SCA方法 来求解式(8)。

式(8)目标函数中 $\log_2\left(1+\frac{p_k}{W_k}\right)$ 在 $W_k^{(n)}$ 1阶泰 勒展开得到全局下界

$$\log_{2}\left(1+\frac{p_{k}}{W_{k}}\right) \geq \log_{2}\left(1+\frac{p_{k}}{W_{k}^{(n)}}\right) - \frac{p_{k}\log_{2}e}{W_{k}^{(n)}(W_{k}^{(n)}+p_{k})}(W_{k}-W_{k}^{(n)}) \triangleq R(W_{k}) \quad (9)$$

对于非凸约束C2b, $\overline{\eta}_{e}^{(n)}$ 处1阶泰勒展开

$$W_{\mathrm{e},k} \le \sum_{i=1,i\neq k}^{K} p_i + \frac{2\sigma^2}{\bar{\eta}_{\mathrm{e}}^{(n)}} - \frac{\sigma^2}{\left(\bar{\eta}_{\mathrm{e}}^{(n)}\right)^2} \bar{\eta}_{\mathrm{e}}$$
 (10)

对于约束C2c和C2d中 \bar{G} 取决于UAV的位置 q,使得约束C2c和C2d的右边难以处理,为了克服 这一障碍,引入约束: $\|q - q^{(n)}\| \leq \delta$,其中 $q^{(n)}$ 表 示SCA第n次迭代的结果, δ 为每次SCA迭代的UAV 最大允许位移。

令 $f_k(u_k, u_r) = \rho_0 u_k^{-\beta_0} + A_k u_r^{-2}$, $g_k(u_k, u_r) = u_k^{-\beta_0/2} u_r^{-1}$, 则约束C2c的右边为 $f_k + B_k g_k$ 。根据幂函数定理^[19], f_k 为凸函数,由于 g_k 的Hesse矩 距 定,所以 g_k 为凸函数^[19]。 $f_k + B_k g_k$ 在 $\{u_k^{(n)}, u_r^{(n)}\}$ 处1阶泰勒展开,得到 $[f_k + B_k g_k]^{lb} = \left\{ \begin{array}{c} [f_k]^{lb} + |B_k| [g_k]^{lb}, B_k \ge 0 \\ [f_k]^{lb} - |B_k| g_k, 其他 \end{array} \right.$,其中 $[f_k]^{lb} \pi [g_k]^{lb}$ 分別为 $f_k \pi g_k$ 的下界。同理,令 $f_e = \rho_0 l_e^{-\beta_0} + C_e l_r^{-2}$, $g_e = l_e^{-\beta_0/2} l_r^{-1}$,则约束C2d的右边为 $f_e + D_e g_e$ 。 $f_e + D_e g_e$ 在 $\{l_e^{(n)}, l_r^{(n)}\}$ 处1阶泰勒展开,得到 $[f_e + D_e g_e]^{ub} = \left\{ \begin{array}{c} f_e + |D_e| g_e, D_e \ge 0 \\ f_e - |D_e| [g_e]^{ub}, \pm 0 \end{array} \right.$,其中 $[g_e]^{ub}$ 为 g_e 的上界。利用SCA,将非凸约束C2f,C2h, C2h,式(2c)转换为凸集。

式(8)可以通过求解下界逼近问题式(11)

$$\max_{q,A,\chi} \sum_{k=1}^{K} \left[R(W_k) - \log_2 \left(1 + \frac{p_k}{W_{e,k}} \right) \right] \\ + \xi \sum_{j=1}^{K} \sum_{i \neq j}^{K} (\alpha_{i,j} - (\alpha_{i,j})^2) \\ \text{s.t. C3a: } \|q - q^{(n)}\| \le \varepsilon \\ \text{C3b: } \eta \le \left[\tilde{f}_k + B_k \tilde{g}_k \right]^{lb} \\ \text{C3c: } \bar{\eta}_e \ge \left[\tilde{f}_e + D_e \tilde{g}_e \right]^{ub} \\ \text{C3c: } \|q^{(n)} - w_e\| + q - q^{(n)} \ge l_e \\ \text{C3e: } \|q^{(n)} - r\| + q - q^{(n)} \ge l_r \\ \text{C3f: } \frac{(\alpha_{i,j} + \alpha_{j,k})^2}{4} \\ + \frac{(\alpha_{i,j}^{(n)} - \alpha_{j,k}^{(n)})^2 - 2(\alpha_{i,j}^{(n)} - \alpha_{j,k}^{(n)})(\alpha_{i,j} - \alpha_{j,k})}{4} \\ \le \alpha_{i,k}, \forall i \neq j \neq k \\ \text{C2a, C2e, C2g, C2i, } \vec{\mathbf{x}}(2b), \ \vec{\mathbf{x}}(10) \end{cases}$$
(11)

式(11)是一个凸优化问题,其最优解可以由凸优化 内点算法求解。对于解码顺序A的求解,进行 $\alpha_{i,j} = \text{round}(\alpha_{i,j})$ 操作,round函数定义为取最近整 数,使解满足0,1约束。

3.2 IRS反射矩阵优化

对于给定的UAV位置q、SIC解码顺序A和 UAV发射功率P,优化IRS反射矩阵 Θ ,优化问题 如式(12)所示。

$$\max R_s, \text{ s.t. C1a}$$
(12)

由于非凸目标函数和非凸约束,式(12)是非凸优化问题。

首先重写 η_k , 将式(4a)重写为 $\eta_k = |\mathbf{h}_k^{\mathrm{H}} \mathbf{v}|^2 + \frac{\rho_0 - Z}{\|\mathbf{q} - \mathbf{w}_{u,k}\|^{\beta_0}} + \frac{t_k}{\|\mathbf{q} - \mathbf{r}\|^2} = \mathrm{Tr}(\mathbf{H}_k \mathbf{V}) + m_k$, 其中 $\mathbf{H}_k = \mathbf{h}_k \mathbf{h}_k^{\mathrm{H}}, \mathbf{h}_k^{\mathrm{H}} = [\mathbf{b}_k^{\mathrm{H}} \, \hat{h}_{ak}], \mathbf{b}_k^{\mathrm{H}} = \hat{\mathbf{g}}_{rk}^{\mathrm{H}} \mathrm{diag}(\mathbf{G}) \in \mathbb{C}^{1 \times N},$ $\mathbf{V} = \mathbf{v} \mathbf{v}^{\mathrm{H}}, \mathbf{\theta} = [\mathrm{e}^{\mathrm{j}\theta_1}, \mathrm{e}^{\mathrm{j}\theta_2}, \cdots, \mathrm{e}^{\mathrm{j}\theta_N}]^{\mathrm{T}}, \mathbf{v} = [\theta^{\mathrm{T}} \, 1]^{\mathrm{T}}, m_k = \frac{\rho_0 - Z}{\|\mathbf{q} - \mathbf{w}_{u,k}\|^{\beta_0}} + \frac{t_k}{\|\mathbf{q} - \mathbf{r}\|^2} \circ \quad \Pi \, \mathbb{H}, \quad \Pi \, \mathrm{fm} \, \mathrm{fm} \, \mathrm{fm} \, \mathrm{fm} \, \mathrm{fm} \, \mathrm{fm}^2$ $\mathbf{T}(\mathbf{H}_{\mathrm{e}}\mathbf{V}) + m_{\mathrm{e}}, \quad \mathrm{fm}^{\mathrm{H}} \mathbf{P}_{\mathrm{e}} = \mathbf{h}_{\mathrm{e}}\mathbf{h}_{\mathrm{e}}^{\mathrm{H}}, \quad \mathbf{h}_{\mathrm{e}}^{\mathrm{H}} = \left[\mathbf{b}_{\mathrm{e}}^{\mathrm{H}} \, \hat{h}_{ae}\right],$ $\mathbf{b}_{\mathrm{e}}^{\mathrm{H}} = \hat{\mathbf{g}}_{\mathrm{re}}^{\mathrm{H}} \mathrm{diag}(\mathbf{G}) \in \mathbb{C}^{1 \times N}, m_{\mathrm{e}} = \frac{\rho_0 - Z}{\|\mathbf{q} - \mathbf{w}_{\mathrm{e}}\|^{\beta_0}} + \frac{t_{\mathrm{e}}}{\|\mathbf{q} - \mathbf{r}\|^2} \circ \text{KH} \, \mathrm{fm} \, \mathrm{fm} \, \mathrm{fm} \, \mathrm{fm}^2, \quad \mathrm{fm}^{\mathrm{H}} \, \mathrm{fm}^{\mathrm{H}}_{\mathrm{e}} = \mathbf{b}_{\mathrm{e}}\mathbf{h}_{\mathrm{e}}^{\mathrm{H}}, \quad \mathrm{fm}^{\mathrm{H}}_{\mathrm{e}} = \left[\mathbf{b}_{\mathrm{e}}^{\mathrm{H}} \, \hat{h}_{ae}\right],$ $\mathbf{b}_{\mathrm{e}}^{\mathrm{H}} = \hat{\mathbf{g}}_{\mathrm{re}}^{\mathrm{H}} \, \mathrm{diag}(\mathbf{G}) \in \mathbb{C}^{1 \times N}, m_{\mathrm{e}} = \frac{\rho_0 - Z}{\|\mathbf{q} - \mathbf{w}_{\mathrm{e}}\|^{\beta_0}} + \frac{t_{\mathrm{e}}}{\|\mathbf{q} - \mathbf{r}\|^{2}} \circ \mathrm{KH} \, \mathrm{fm}^2 \, \mathrm{fm}^2, \quad \mathrm{fm}^{\mathrm{H}}_{\mathrm{e}} = \mathbf{b}_{\mathrm{e}} \, \mathbf{h}_{\mathrm{he}}^{\mathrm{H}} = \left[\mathbf{b}_{\mathrm{e}}^{\mathrm{H}} \, \hat{h}_{\mathrm{ae}}\right],$ $\mathbf{b}_{\mathrm{e}}^{\mathrm{H}} = \hat{\mathbf{g}}_{\mathrm{re}}^{\mathrm{H}} \, \mathrm{diag}(\mathbf{G}) \in \mathbb{C}^{1 \times N}, m_{\mathrm{e}} = \frac{\rho_0 - Z}{\|\mathbf{q} - \mathbf{w}_{\mathrm{e}}\|^{\beta_0}} + \frac{t_{\mathrm{e}}}{\|\mathbf{q} - \mathbf{r}\|^{2}} \circ \mathrm{KH} \, \mathrm{fm}^2 \, \mathrm{fm}^2, \quad \mathrm{fm}^2 \, \mathrm{fm$

将式(13)等号右边各项分别表示为 $\hat{f}_k, \hat{g}_k, \hat{f}_e, \hat{g}_e$,将式(12)重写为式(14)

$$\max_{V} R_{s} = \sum_{k=1}^{K} (\widehat{f}_{k} - \widehat{g}_{k} - \widehat{f}_{e} + \widehat{g}_{e})$$
s.t. C4a: $[\mathbf{V}]_{nn} = 1, n = 1, 2, \cdots, N+1$
C4b: $\mathbf{V} \succeq 0, \mathbf{V} \in \mathbb{H}^{N+1}$
C4c: rank $(\mathbf{V}) = 1$

$$(14)$$

由于约束C4c为非凸约束,采用SDR方法,忽略约束C4c,式(14)可以通过求解下界逼近问题式(15)

$$\max_{V} R_{s} = \sum_{k=1}^{K} (\widehat{f}_{k} - [\widehat{g}_{k}]^{ub} - [\widehat{f}_{e}]^{ub} + \widehat{g}_{e}) , \text{s.t. C4a, C4b}$$

$$(15)$$

其中, $[\hat{g}_k]^{ub}$ 和 $[\hat{f}_e]^{ub}$ 分别为在SCA第n次迭代后的 点 $V^{(n)}$ 处, 对 \hat{g}_k 和 \hat{f}_e 进行1阶泰勒展开得到的上界, 式(15)是一个凸优化问题, 但式(15)的最优解 V^* 可能不满足秩为1, 需要从式(15)的解来构造秩 为1的解。参考文献[20],将 V^* 进行特征值分解, 得 到 $V^* = U\Sigma U^{H}$, 其中 $U = [e_1, e_2, ..., e_{N+1}]$, $\Sigma = \text{diag}\{\lambda_1, \lambda_2, ..., \lambda_{N+1}\}$ 分别是酉矩阵和对角矩 阵。令 $v^* = U\Sigma^{1/2}x$, 其中 $x \in \mathbb{C}^{(N+1)\times 1}$ 是根据 $x \in CN(0, I_{N+1})$ 生成的随机向量,则式(14)的解为 $V = vv^{H}$,其中 $v = e^{j \arg([v^*N+1])}$,从而得到 $\theta^{T} =$ $[v]_{(1:N)}$, $[v]_{(1:N)}$ 表示包含v中前N个元素的向量。 **3.3 UAV发射功率优化**

对于给定UAV位置q、SIC解码顺序A和IRS反 射矩阵 Θ ,优化UAV发射功率P,优化问题如式(16) 所示。

$$\max_{R_s} R_s$$
, s.t. C1b,C1c (16)

将用户Uk安全速率Rs.k重写为

$$R_{s,k} = \log_2 \left(\eta_k \sum_{i=1}^K \alpha_{i,k} p_i + \sigma^2 \right)$$
$$- \log_2 \left(\eta_k \sum_{i=1, i \neq k}^K \alpha_{i,k} p_i + \sigma^2 \right)$$
$$- \log_2 \left(\eta_e \sum_{i=1}^K p_i + \sigma^2 \right)$$
$$+ \log_2 \left(\eta_e \sum_{i=1, i \neq k}^K p_i + \sigma^2 \right)$$
(17)

将式(17)等号右边各项分别表示为 $\overline{f}_k, \overline{g}_k, \overline{f}_{e,k}, \overline{g}_{e,k},$ 式(17)可重写为 $R_{s,k} = \overline{f}_k - \overline{g}_k - \overline{f}_{e,k} + \overline{g}_{e,k},$ 式(16)可以通过求解下界逼近问题式(18)

$$\max_{P} \sum_{k=1}^{K} (\overline{f}_{k} - [\overline{g}_{k}]^{ub} - [\overline{f}_{e,k}]^{ub} + \overline{g}_{e,k}) \text{, s.t. C1b,C1c}$$
(18)

其中, $[\overline{g}_k]^{ub}$ 和 $[\overline{f}_{e,k}]^{ub}$ 分别为在点 $P^{(n)}$ 处,对 \hat{g}_k 和 \hat{f}_e 进行1阶泰勒展开得到的上界,式(18)是一个凸优 化问题,其最优解可以用凸优化内点算法求解。

综上,给出解决式(5)的基于BCD的安全速率 最大化算法如算法1所示。

假设算法1的迭代次数是M,由文献[21]所得算法1复杂度为 $O\left(M(K^{8.5} + N^{3.5})\log_2\left(\frac{1}{\varepsilon}\right)\right)$ 。

算法1 基于BCD的安全速率最大化算法

初始化: N, K, $\{q^{(0)}, A^{(0)}, \Theta^{(0)}, P^{(0)}\}$,迭代次数 $n=0$,容忍误差 $arepsilon$,最大迭代次数 $n_{ ext{max}}$
REPEAT
给定 $\boldsymbol{\Theta}^{(n)}$ 和 $\boldsymbol{P}^{(n)}$ 时,基于凸优化求解问题式(11)计算UAV位置和SIC解码顺序 $\boldsymbol{q}^{(n+1)}$ 和 $\boldsymbol{A}^{(n+1)}$
给定 $q^{(n+1)}$ 、 $A^{(n+1)}$ 和 $P^{(n)}$ 时,基于凸优化求解问题式(15)计算IRS反射矩阵 $\Theta^{(n+1)}$
给定 $q^{(n+1)}$ 、 $A^{(n+1)}$ 和 $\Theta^{(n+1)}$ 时,基于凸优化求解问题式(18)计算UAV发射功率 $P^{(n+1)}$
更新 $R_s^{(n+1)}$, n=n+1
UNTIL $\operatorname{abs}(R_s^{(n)} - R_s^{(n-1)}) \le \varepsilon \overline{\mathfrak{R}} n > n_{\max}$
输出, $IIAV位置_{\boldsymbol{a}}^{(n)}$, SIC解码顺序 $\boldsymbol{A}^{(n)}$, IRS反射矩阵 $\boldsymbol{\Theta}^{(n)}$ 和 $IIAV发射功率 \boldsymbol{p}^{(n)}$

4 仿真结果

考虑用户数K = 7, 仿真参数设置如下:参考 距离1 m处的路径损耗为 $\rho_0 = -30$ dB,路径衰落 指数为 $\beta_0 = 2$,莱斯因子为R = 10 dB,UAV的高 度H = 100 m,UAV最大允许优化位移 $\delta = 5$ m, 根据UAV到用户的距离初始化SIC解码顺序A, UAV的发送功率由最大发射功率初始化,平均分 配给各用户,IRS的相移在 $[0,2\pi)$ 内随机均匀生成。

算法1在不同IRS反射元件数N和UAV最大发 射功率P_{max}情况下的收敛情况如图2所示。本文提 出的基于BCD的优化算法随着迭代次数的增加而

收敛,当 P_{max} = 30 dBm时,IRS反射元件数N = 240 比N = 80情况下的系统安全速率提高了1.55%,当 IRS反射元件数N = 240时,UAV最大发射功率 P_{max} = 35 dBm比 P_{max} = 30 dBm情况下的系统安全 速率提高了10.3%。

从图3(a)可以看出,在UAV最大发射功率30 dBm 的情况下,算法1所得到的系统安全速率随着IRS 反射元件数的增加而增大。相比该系统中没有 IRS的情况,IRS反射元件数为80时,系统安全速 率提高5.1%。相比系统使用OMA协议且没有放置 IRS的情况,使用NOMA协议但没有放置IRS的系 统安全速率提高了11倍。

从图3(b)可以看出,在IRS反射元件数N = 80的情况下,算法1所得到的系统安全速率随着UAV最大发射功率的增加而增大。相比该系统没有IRS的情况, $P_{max} = 30$ dBm时,系统安全速率提高5.1%,相比系统使用OMA协议且没有放置IRS的情况, $P_{max} = 30$ dBm时,使用NOMA协议但没有放置IRS的系统安全速率提高了11倍。

将用户位置随机均匀分布在半径为10 m的圆 形区域内,在IRS反射元件数为80,UAV最大发射 功率为30 dBm的情况下,安全速率随用户个数的

变化曲线如图3(c)所示。用户个数越多,系统安全 速率越大。在不同用户个数下,本文提出的方案都 优于基准方案。

5 结论

本文研究了IRS辅助的NOMA无人机网络的安 全速率,提出一种联合UAV位置、SIC解码顺序、 IRS反射矩阵和UAV反射功率的优化算法来实现系 统安全速率最大化。首先,分析了IRS辅助的 NOMA无人机网络模型;其次,构建安全速率优 化问题;然后,采用惩罚函数、SDR、SCA等方法 对优化问题进行处理并求解;最后,通过与其他方 案对比,利用仿真,验证了本文所提算法的有效 性。在下一步的研究工作中可以考虑多无人机协同 或多个IRS协作来提高系统安全性能,还可以考虑 实际应用中会遇到的一些问题,如相位误差^[22]和反 射单元数目配置^[23]等。

参考文献

- ZHANG Xing, ZHANG Yan, YU Rong, et al. Enhancing spectral-energy efficiency for LTE-advanced heterogeneous networks: A users social pattern perspective[J]. *IEEE* Wireless Communications, 2014, 21(2): 10–17. doi: 10.1109/ MWC.2014.6812286.
- [2] MATOLAK D W and SUN Ruoyu. Air-ground channel characterization for unmanned aircraft systems—part III: The suburban and near-urban environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6607-6618. doi: 10.1109/TVT.2017.2659651.
- [3] OUBBATI O S, ATIQUZZAMAN M, AHANGER T A, et al. Softwarization of UAV networks: A survey of applications and future trends[J]. *IEEE Access*, 2020, 8: 98073–98125. doi: 10.1109/ACCESS.2020.2994494.
- [4] MARAQA O, RAJASEKARAN A S, AL-AHMADI S, et al. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2192–2235. doi: 10.1109/COMST.2020.3013514.
- [5] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. *IEEE Communications Magazine*, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
- [6] WU Huici, LI Hanjie, WEI Zhiqing, et al. Secrecy performance analysis of air-to-ground communication with UAV jitter and multiple random walking eavesdroppers[J]. *IEEE Transactions on Vehicular Technology*, 2021, 70(1): 572–584. doi: 10.1109/TVT.2020.3047082.
- [7] WU Xuemeng, WEI Zaixue, CHENG Zhenqiao, et al. Joint optimization of UAV trajectory and user scheduling based

on NOMA technology[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663. 2020.9120737.

- PANG Xiaowei, LI Zan, CHEN Xiaoming, et al. UAV-aided NOMA networks with optimization of trajectory and precoding[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–6. doi: 10.1109/WCSP.2018. 8555640.
- [9] DUO Bin, LUO Junsong, LI Yilian, et al. Joint trajectory and power optimization for securing UAV communications against active eavesdropping[J]. China Communications, 2021, 18(1): 88–99. doi: 10.23919/JCC.2021.01.008.
- [10] GAO Ying, TANG Hongying, LI Baoqing, et al. Joint trajectory and power design for UAV-enabled secure communications with No-Fly zone constraints[J]. IEEE Access, 2019, 7: 44459–44470. doi: 10.1109/ACCESS.2019. 2908407.
- [11] MU Xidong, LIU Yuanwei, GUO Li, et al. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[J]. *IEEE Transactions on Wireless Communications*, 2020, 19(10): 6884–6898. doi: 10. 1109/TWC.2020.3006915.
- [12] ZUO Jiakuo, LIU Yuanwei, BASAR E, et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020, 24(11): 2632-2636. doi: 10.1109/LCOMM.2020.3009158.
- [13] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. *IEEE Wireless Communications Letters*, 2020, 9(6): 778–782. doi: 10.1109/ LWC.2020.2969629.
- [14] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. *IEEE Wireless Communications Letters*, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
- [15] FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. *IEEE Wireless Communications Letters*, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969.
- [16] LI Sixian, DUO Bin, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. *IEEE Transactions on Wireless Communications*, 2021, 20(10): 6402–6417. doi: 10.1109/ TWC.2021.3073746.
- [17] MU Xidong, LIU Yuanwei, GUO Li, et al. Intelligent reflecting surface enhanced multi-UAV NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2021,

39(10): 3051–3066. doi: 10.1109/JSAC.2021.3088679.

- [18] HUA Meng, YANG Luxi, WU Qingqing, et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission[J]. *IEEE Transactions on Communications*, 2020, 68(9): 5908–5923. doi: 10.1109/ TCOMM.2020.3003662.
- [19] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–89.
- [20] LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019-2033. doi: 10.1109/TWC.2021.3108901.
- [21] MAO Sun, LENG Supeng, HU Jie, et al. Power minimization resource allocation for underlay MISO-NOMA SWIPT systems[J]. *IEEE Access*, 2019, 7: 17247–17255. doi: 10.1109/ACCESS.2019.2892321.

- [22] LI Dong. Ergodic capacity of intelligent reflecting surfaceassisted communication systems with phase errors[J]. *IEEE Communications Letters*, 2020, 24(8): 1646–1650. doi: 10. 1109/LCOMM.2020.2997027.
- [23] LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surfaceassisted communication[J]. *IEEE Transactions on Communications*, 2022, 70(2): 1320–1331. doi: 10.1109/ TCOMM.2021.3128544.
- 王正强: 男, 副教授, 研究方向为无人机通信、下一代无线通信.
- 青思雨: 女,硕士生,研究方向为智能反射面通信、无人机通信.
- 万晓榆:男,教授,研究方向为下一代无线通信.
- 樊自甫: 男, 教授, 研究方向为下一代无线通信.
- 徐勇军: 男, 副教授, 研究方向为反向散射通信.
- 多 滨: 男,教授,研究方向为无人机通信.

责任编辑: 马秀强