高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于时分复用技术的多阶段协同优化FPGA布线方法

刘耿耿 许文霖 周茹平 徐宁

刘耿耿, 许文霖, 周茹平, 徐宁. 用于时分复用技术的多阶段协同优化FPGA布线方法[J]. 电子与信息学报, 2023, 45(9): 3430-3438. doi: 10.11999/JEIT221158
引用本文: 刘耿耿, 许文霖, 周茹平, 徐宁. 用于时分复用技术的多阶段协同优化FPGA布线方法[J]. 电子与信息学报, 2023, 45(9): 3430-3438. doi: 10.11999/JEIT221158
LIU Genggeng, XU Wenlin, ZHOU Ruping, XU Ning. Multi-Stage Co-Optimization FPGA Routing for Time-Division Multiplexing Technique[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3430-3438. doi: 10.11999/JEIT221158
Citation: LIU Genggeng, XU Wenlin, ZHOU Ruping, XU Ning. Multi-Stage Co-Optimization FPGA Routing for Time-Division Multiplexing Technique[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3430-3438. doi: 10.11999/JEIT221158

用于时分复用技术的多阶段协同优化FPGA布线方法

doi: 10.11999/JEIT221158
基金项目: 国家自然科学基金(61877010)
详细信息
    作者简介:

    刘耿耿:男,博士,副教授,研究方向为微流控生物芯片及VLSI设计自动化

    许文霖:男,硕士生,研究方向为EDA算法

    周茹平:女,硕士生,研究方向为超大规模集成电路布线

    徐宁:男,博士,教授,研究方向为电子设计自动化、计算机软件与系统

    通讯作者:

    刘耿耿 liugenggeng@fzu.edu.cn

  • 中图分类号: TN43

Multi-Stage Co-Optimization FPGA Routing for Time-Division Multiplexing Technique

Funds: The National Natural Science Foundation of China (61877010)
  • 摘要: 时分复用(Time-Division Multiplexing, TDM)技术被广泛地运用于解决IO瓶颈问题,以提高现场可编程门阵列(Field Programmable Gate Array, FPGA)系统的可布线性,但TDM比率的增大会导致系统时延的显著增加。因此,为了优化FPGA系统时延以及可布线性,该文提出一种用于时分复用技术的多阶段协同优化FPGA布线(Multi-Stage Co-Optimization FPGA Routing, MSCOFRouting)方法。首先,设计自适应布线算法,以减少布线拥塞情况,提高可布线性,解决FPGA间的布线优化问题,为后续的TDM比率分配提供高质量的布线结果。其次,为了避免因大规模线网组的TDM比率过大而导致系统时延劣化的情况,提出基于拉格朗日松弛(Lagrangian Relaxation, LR)的TDM比率分配算法,为布线图的边分配系统时延更小的初始TDM比率。此外,为了进一步减小最大线网组的TDM比率,通过一种多层次的TDM比率优化算法,缩减线网组和FPGA连接对的TDM比率。同时,为了提高MSCOFRouter的运行效率,在上述3个算法中使用多线程并行化方法,有效缩减运行时间。实验结果表明,MSCOFRouting可以获得满足TDM比率约束的结果,取得同类工作中最佳的布线优化结果和TDM比率分配结果。
  • 图  1  时分复用技术的示意图

    图  2  TDM比率分配示意图

    图  3  MSCOFRouting总体流程图

    图  4  FPGA之间不同布线情况示意图

    图  5  并行化方法有效性折线图

    表  1  常用符号

    符号含义
    NG所有线网组
    N所有线网
    P所有FPGA连接对
    E所有线网的边
    Ne经过边e的所有线网
    ngiNG中第i个线网组
    njN中第j个线网
    pkP中第k个FPGA连接对
    nglj包含nj的线网组,nglj ⊆NG
    ngj,mnglj中的第m个线网组
    ej,knj中使用pk的边
    elkpk的边
    eljnj的边
    nlingi的线网
    α线网组的数量
    mngjnglj中带有最大TDM比率的线网组
    下载: 导出CSV

    表  2  线网组信息

    线网组线网FPGA示例
    NG1N1F3, F4
    N2F1, F4
    NG2N3F1, F2
    N4F1, F2
    NG3N1F3, F4
    NG4N5F1, F2
    NG5N6F2, F3
    下载: 导出CSV

    表  3  测试用例信息

    测试用例#FPGA#Net#NG#Edge
    S1436845640552214
    S2563515556308157
    S3114302956334652350
    S42295519564648671087
    S53018814808791452153
    S64107855399107391852
    H1735431050417289
    H2157610675501594803
    H34877205208867202720
    下载: 导出CSV

    表  4  本文算法与ALIFRouter及MSFRoute的实验比较(TR为TDM Ratio)

    测试用例MSFRouteALIFRouter本文算法
    TR(103)RTscoTR(103)RTscoTR(103)RTsco
    S13934.32393824.88383730.5837
    S23209720.51320973173619.58317303167120.8631673
    S3129396289.91129375127826304.50127832127046300.99127046
    S47301642.5173016466641.6264666312619.886311
    S553701673.51537147661558.48476646181570.514618
    S6157598574536.3315757896157513074668.1815751307157472364845.9015749791
    H140965476.8640966140902676.5440902640848766.81408246
    H2459477751322.9645947798459427571322.8145942757459342571217.8145917758
    H348719175283.91486832448664846593.58486757548614016261.794861401
    sum622895396227392262245480
    Normalized1.04571.02081.01051.00441.00001.0000
    下载: 导出CSV

    表  5  自适应布线算法有效性验证

    测试用例采用(te=1, to=1)采用(te=0.21, to=1.79)采用(te=0.2, to=1.8)采用(te=0.19, to=1.81)采用(te=0.18, to=1.82)
    △TR(103)Ratio△TR(103)Ratio△TR(103)Ratio△TR(103)Ratio△TR(104)Ratio
    S111.000011.000011.000022.000011.0000
    S23751.00004171.11204231.12804281.14134121.0987
    S318411.000018641.012519481.058119861.078819411.0543
    S48321.00008571.03009311.11909501.14189271.1142
    S56041.00006271.03816971.15407171.18716871.1374
    S6115741.0000136141.1763120011.0369120091.0376120041.0372
    H17981.00008011.00388071.01138121.01758081.0125
    H277421.000077851.005677951.006878211.010278011.0076
    H362141.000062451.005095211.5322100981.625094571.5219
    平均1.00001.04261.11631.24881.1093
    下载: 导出CSV

    表  6  LR分配算法(即TDM比率分配算法)和TDM比率优化算法有效性验证

    测试用例ALIFRouter只使用LR分配算法只使用TDM比率优化算法
    △TR(103)Ratio△TR(103)Ratio△TR(103)Ratio
    S111.000011.000011.0000
    S23841.00004211.09644191.1607
    S318771.000019601.044221551.3726
    S48481.00008891.04839371.1222
    S56211.00006351.02256901.1424
    S6119941.0000185501.5466119891.4022
    H17991.00008041.00638040.0022
    H277751.000077761.000177761.5496
    H362201.000064191.032064291.1833
    平均1.00001.08851.1039
    下载: 导出CSV
  • [1] TURKI M, MARRAKCHI Z, MEHREZ H, et al. Signal multiplexing approach to improve inter-FPGA bandwidth of prototyping platform[J]. Design Automation for Embedded Systems, 2015, 19(3): 223–242. doi: 10.1007/s10617-014-9155-4
    [2] LING A and ANDERSON J. The role of FPGAs in deep learning[C]. Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, USA, 2017: 3.
    [3] CHIU G R, LING A C, CAPALIJA D, et al. Flexibility: FPGAs and cad in deep learning acceleration[C]. Proceedings of the 2018 International Symposium on Physical Design, Monterey, USA, 2018: 34–41.
    [4] HUNG W N N and SUN R. Challenges in large FPGA-based logic emulation systems[C]. Proceedings of the 2018 International Symposium on Physical Design, Monterey, USA, 2018: 26–33.
    [5] HAUCK S. The roles of FPGAs in reprogrammable systems[J]. Proceedings of the IEEE, 1998, 86(4): 615–638. doi: 10.1109/5.663540
    [6] CHEN S C, SUN R, and CHANG Yaowen. Simultaneous partitioning and signals grouping for time-division multiplexing in 2.5D FPGA-based systems[C]. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, USA, 2018: 1–7.
    [7] TURKI M, MARRAKCHI Z, MEHREZ H, et al. Iterative routing algorithm of inter-FPGA signals for multi-FPGA prototyping platform[C]. The 9th International Symposium on Reconfigurable Computing: Architectures, Tools and Applications, Los Angeles, USA, 2013: 210–217.
    [8] FAROOQ U, CHOTIN-AVOT R, AZEEM M, et al. Inter-FPGA routing environment for performance exploration of multi-FPGA systems[C]. 2016 International Symposium on Rapid System Prototyping (RSP), Pittsburgh, USA, 2016: 1–7.
    [9] PUI C W and YOUNG E F Y. Lagrangian relaxation-based time-division multiplexing optimization for multi-FPGA systems[J]. ACM Transactions on Design Automation of Electronic Systems, 2020, 25(2): 21. doi: 10.1145/3377551
    [10] INAGI M, TAKASHIMA Y, and NAKAMURA Y. Globally optimal time-multiplexing in inter-FPGA connections for accelerating multi-FPGA systems[C]. 2009 International Conference on Field Programmable Logic and Applications, Prague, Czech Republic, 2009: 212–217.
    [11] ZHUANG Zhen, HUANG Xing, LIU Genggeng, et al. ALIFRouter: A practical architecture-level inter-FPGA router for logic verification[C]. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021: 1570–1573.
    [12] SU Y H, SUN R, and HO P H. 2019 CAD contest: System-level FPGA routing with timing division multiplexing technique[C]. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, USA, 2019: 1–2.
    [13] FRESCHI V and LATTANZI E. A prim–Dijkstra algorithm for Multihop calibration of networked embedded systems[J]. IEEE Internet of Things Journal, 2021, 8(14): 11320–11328. doi: 10.1109/JIOT.2021.3051270
    [14] CHEN Xiaohua, ZHOU Ruping, LIU Genggeng, et al. Timing-driven X-architecture Steiner minimum tree construction based on social learning multi-objective particle swarm optimization[C]. Companion Proceedings of the Web Conference, Ljubljana, Slovenia, 2021: 77–84.
    [15] KULIK A, SHACHNAI H, and TAMIR G. On Lagrangian relaxation for constrained maximization and reoptimization problems[J]. Discrete Applied Mathematics, 2021, 296: 164–178. doi: 10.1016/j.dam.2020.10.001
    [16] SHARMA A, CHINNERY D, DHAMDHERE S, et al. Rapid gate sizing with fewer iterations of Lagrangian relaxation[C]. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, USA, 2017: 337–343.
    [17] MANGIRAS D, STEFANIDIS A, SEITANIDIS I, et al. Timing-driven placement optimization facilitated by timing-compatibility flip-flop clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(10): 2835–2848. doi: 10.1109/TCAD.2019.2942001
    [18] ZHUANG Zhen, LIU Genggeng, HUANG Xing, et al. MSFRoute: Multi-stage FPGA routing for timing division multiplexing technique[C/OL]. Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020: 107–112.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  305
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2023-03-31
  • 网络出版日期:  2023-04-04
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回