高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

误差条件下基于协方差矩阵重构的自适应波束形成

胡斌 沈学勇 蒋敏

胡斌, 沈学勇, 蒋敏. 误差条件下基于协方差矩阵重构的自适应波束形成[J]. 电子与信息学报, 2023, 45(8): 2986-2990. doi: 10.11999/JEIT220918
引用本文: 胡斌, 沈学勇, 蒋敏. 误差条件下基于协方差矩阵重构的自适应波束形成[J]. 电子与信息学报, 2023, 45(8): 2986-2990. doi: 10.11999/JEIT220918
HU Bin, SHEN Xueyong, JIANG Min. Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Uncertainties[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2986-2990. doi: 10.11999/JEIT220918
Citation: HU Bin, SHEN Xueyong, JIANG Min. Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Uncertainties[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2986-2990. doi: 10.11999/JEIT220918

误差条件下基于协方差矩阵重构的自适应波束形成

doi: 10.11999/JEIT220918
基金项目: 江苏省双创博士基金
详细信息
    作者简介:

    胡斌:男,博士,研究方向为雷达信号处理和雷达系统设计等

    沈学勇:男,硕士,研究员级高级工程师,研究方向为雷达信号处理和雷达系统设计等

    蒋敏:男,博士,高级工程师,研究方向为雷达信号处理和雷达系统设计等

    通讯作者:

    胡斌 hubin_1147@163.com

  • 中图分类号: TN958

Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Uncertainties

Funds: Jiangsu Innovative and Entrepreneurial Talent Programme
  • 摘要: 针对有幅相误差的互质阵列,提出了一种基于协方差矩阵重构的鲁棒自适应波束形成方法。该方法的主要思想是重构信号的协方差矩阵。如果幅相误差存在且无法被忽视,协方差矩阵重构的精度会受到幅相误差的影响。为了消除幅相误差的影响,准确地重构信号的协方差矩阵,提出了一种基于最小二乘(TLS)的方法。首先,建立了含有幅相误差的协方差矩阵重构的基本模型。然后,将问题转化为变量误差(EIV)模型。再将幅相误差的校准转换为与幅相误差相关的误差矩阵的估计,再利用估计结果得到信号协方差矩阵的有效估计。为了解决误差矩阵估计问题,提出了一种交替下降算法。仿真结果表明,即使在存在幅相误差的情况下,该方法仍能提高协方差矩阵的重建精度,并且自适应波束的性能优于现有算法。
  • 图  1  自适应波束形成方向图

    图  2  不同信噪比下输出信干噪比

    图  3  不同快拍数下输出信干噪比

  • [1] VAIDYANATHAN P P and PAL P. System identification with sparse coprime sensing[J]. IEEE Signal Processing Letters, 2010, 17(10): 823–826. doi: 10.1109/LSP.2010.2060331
    [2] GU Yujie, ZHOU Chengwei, GOODMAN N A, et al. Coprime Array adaptive beamforming based on compressive sensing virtual array signal[C]. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2981–2985.
    [3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [4] 孟振. 天线阵列稳健自适应波束形成算法研究[D]. [博士论文], 哈尔滨工程大学, 2020.

    MENG Zhen. Study on The method of robust adaptive beamforming in antennas array[D]. [Ph. D. dissertation], Harbin Engineering University, 2020.
    [5] ZHANG Kun, SHEN Chong, LI Hanwen, et al. Direction of arrival estimation and robust adaptive beamforming with unfolded augmented coprime array[J]. IEEE Access, 2020, 8: 22314–22323. doi: 10.1109/ACCESS.2020.2968956
    [6] MENG Zhen and ZHOU Weidong. Robust adaptive beamforming for coprime array with steering vector estimation and covariance matrix reconstruction[J]. IET Communications, 2020, 14(16): 2749–2758. doi: 10.1049/iet-com.2019.1314
    [7] 刘春波, 陈伯孝, 陈多芳, 等. 双基地高频地波SIAR通道幅相误差的自校准方法[J]. 电子与信息学报, 2009, 31(3): 614–618. doi: 10.3724/SP.J.1146.2007.01659

    LIU Chunbo, CHEN Baixiao, CHEN Duofang, et al. Self-calibration of channel errors for bistatic HF surface wave SIAR[J]. Journal of Electronics &Information Technology, 2009, 31(3): 614–618. doi: 10.3724/SP.J.1146.2007.01659
    [8] FRIEDLANDER B and WEISS A J. Eigenstructure methods for direction finding with sensor gain and phase uncertainties[C]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing, New York, USA, 1988: 2681–2684.
    [9] HU Bin, WU Xiaochuan, ZHANG Xin, et al. DOA estimation based on compressed sensing with gain/phase uncertainties[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1346–1352. doi: 10.1049/iet-rsn.2018.5087
    [10] 胡斌. 基于压缩感知的稀疏阵列DOA估计关键技术研究[D]. [博士论文], 哈尔滨工业大学, 2020.

    HU Bin. Research on key technologies of DOA estimation of sparse array based on compressed sensing[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2020.
    [11] GE Qichao, ZHANG Yongshun, FENG Ziang, et al. Novel robust adaptive beamformer in the presence of gain-phase errors[J]. Circuits, Systems, and Signal Processing, 2021, 40(4): 1926–1947. doi: 10.1007/s00034-020-01568-7
    [12] ZHU Hao, LEUS G, and GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002–2016. doi: 10.1109/TSP.2011.2109956
    [13] MARKOVSKY I and VAN HUFFEL S. Overview of total least-squares methods[J]. Signal Processing, 2007, 87(10): 2283–2302. doi: 10.1016/j.sigpro.2007.04.004
    [14] NESTARES O, FLEET D J, and HEEGER D J. Likelihood functions and confidence bounds for total-least-squares problems[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, USA, 2000: 13–15.
    [15] LI Hui, ZHAO Yongbo, CHENG Zengfei, et al. Robust adaptive beamforming based on sparse representation technique[J]. IET Radar, Sonar & Navigation, 2017, 11(9): 1417–1424. doi: 10.1049/iet-rsn.2016.0621
  • 加载中
图(3)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  386
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2023-02-06
  • 网络出版日期:  2023-02-08
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回