高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分组可裂设计的分裂认证码的构造

王秀丽 晋霓 江雨杭

王秀丽, 晋霓, 江雨杭. 基于分组可裂设计的分裂认证码的构造[J]. 电子与信息学报, 2022, 44(2): 591-601. doi: 10.11999/JEIT210683
引用本文: 王秀丽, 晋霓, 江雨杭. 基于分组可裂设计的分裂认证码的构造[J]. 电子与信息学报, 2022, 44(2): 591-601. doi: 10.11999/JEIT210683
WANG Xiuli, JIN Ni, JIANG Yuhang. Constructions of Splitting Authentication Codes Based on Group Divisible Design[J]. Journal of Electronics & Information Technology, 2022, 44(2): 591-601. doi: 10.11999/JEIT210683
Citation: WANG Xiuli, JIN Ni, JIANG Yuhang. Constructions of Splitting Authentication Codes Based on Group Divisible Design[J]. Journal of Electronics & Information Technology, 2022, 44(2): 591-601. doi: 10.11999/JEIT210683

基于分组可裂设计的分裂认证码的构造

doi: 10.11999/JEIT210683
基金项目: 中央高校基本科研业务费中国民航大学自然科学类重点项目(3122019192)
详细信息
    作者简介:

    王秀丽:女,1976年生,副教授,硕士生导师,研究方向为代数、组合、密码及编码

    晋霓:女,1998年生,硕士生,研究方向为代数、组合、密码及编码

    通讯作者:

    王秀丽 xlwangcauc@163.com

  • 中图分类号: TN918

Constructions of Splitting Authentication Codes Based on Group Divisible Design

Funds: The Key Projects of Natural Science from Fundamental Research of the Central Universities of China Civil Aviation University (3122019192)
  • 摘要: 分裂认证码是研究带仲裁的认证码的一种重要手段,相对无分裂认证码而言,分裂认证码大大提高了编码规则的利用率,该文主要通过可分组设计构造分裂认证码。首先给出了通过可分组设计(GDD)构造分裂认证码的定理,利用可分组设计构造可裂可分组设计,再由可裂可分组设计构造可裂平衡不完全区组设计(BIBD),进而得到分裂认证码;验证在该文给定的条件下,通过可分组设计构造分裂认证码的可行性,在此基础上设计了一种可裂设计,构造了一组分裂认证码。计算所构造的分裂认证码的信源个数、编码规则个数、消息个数和假冒攻击成功概率及替代攻击成功概率等参数,并证明所构造的分裂认证码为最优分裂认证码。给出所构造的分裂认证码的具体例子,计算其假冒攻击成功概率、替代攻击成功概率,通过模拟仿真验证构造的合理性,并验证其满足最优性。
  • 图  1  分裂认证码$ \left(\mathrm{3,73,219}\right) $模仿攻击成功概率模拟仿真

    图  2  分裂认证码$ \left(\mathrm{3,73,219}\right) $替代攻击成功概率模拟仿真

    图  3  分裂认证码$ \left(\mathrm{3,97,388}\right) $模仿攻击成功概率模拟仿真

    图  4  分裂认证码$ \left(\mathrm{3,97,388}\right) $替代攻击成功概率模拟仿真

    表  1  分裂认证码的示例

    $ {s}_{1} $$ {s}_{2} $
    $ {e}_{1} $$ \left\{{m}_{1}, \,{m}_{2}\right\} $$ \left\{{m}_{3}, \,{m}_{5}\right\} $
    $ {e}_{2} $$ \left\{{m}_{2}, \,{m}_{3}\right\} $$ \left\{{m}_{4}, \,{m}_{6}\right\} $
    $ {e}_{3} $$ \left\{{m}_{3}, \,{m}_{4}\right\} $$ \left\{{m}_{5}, \,{m}_{7}\right\} $
    $ {e}_{4} $$ \left\{{m}_{4}, \,{m}_{5}\right\} $$ \left\{{m}_{6}, \,{m}_{8}\right\} $
    $ {e}_{5} $$ \left\{{m}_{5}, \,{m}_{6}\right\} $$ \left\{{m}_{7}, \,{m}_{9}\right\} $
    $ {e}_{6} $$ \left\{{m}_{6}, \,{m}_{7}\right\} $$ \left\{{m}_{8}, \,{m}_{1}\right\} $
    $ {e}_{7} $$ \left\{{m}_{7}, \,{m}_{8}\right\} $$ \left\{{m}_{9}, \,{m}_{2}\right\} $
    $ {e}_{8} $$ \left\{{m}_{8}, \,{m}_{9}\right\} $$ \left\{{m}_{1}, \,{m}_{3}\right\} $
    $ {e}_{9} $$ \left\{{m}_{9}, \,{m}_{1}\right\} $$ \left\{{m}_{2}, \,{m}_{4}\right\} $
    下载: 导出CSV

    表  2  2-分裂认证码$ \left(\mathrm{3,73,219}\right) $

    $ {s}_{1} $$ {s}_{2} $$ {s}_{3} $
    $ {e}_{1} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{25},{m}_{26}\} $$ \{{m}_{49},{m}_{50}\} $
    $ {e}_{2} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{27},{m}_{28}\} $$ \{{m}_{51},{m}_{52}\} $
    $ {e}_{3} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{29},{m}_{30}\} $$ \{{m}_{53},{m}_{54}\} $
    $ {e}_{4} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{31},{m}_{30}\} $$ \{{m}_{55},{m}_{56}\} $
    $ {e}_{5} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{33},{m}_{30}\} $$ \{{m}_{57},{m}_{58}\} $
    $ {e}_{6} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{35},{m}_{30}\} $$ \{{m}_{59},{m}_{60}\} $
    $ {e}_{7} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{37},{m}_{30}\} $$ \{{m}_{61},{m}_{62}\} $
    $ {e}_{8} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{39},{m}_{30}\} $$ \{{m}_{63},{m}_{64}\} $
    $ {e}_{9} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{41},{m}_{30}\} $$ \{{m}_{65},{m}_{66}\} $
    $ {e}_{10} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{43},{m}_{30}\} $$ \{{m}_{67},{m}_{68}\} $
    $ {e}_{11} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{45},{m}_{30}\} $$ \{{m}_{69},{m}_{70}\} $
    $ {e}_{12} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{47},{m}_{30}\} $$ \{{m}_{71},{m}_{72}\} $
    $ {e}_{13} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{3},{m}_{5}\} $$ \{{m}_{13},{m}_{21}\} $
    $ {e}_{14} $$ \{{m}_{6},{m}_{7}\} $$ \{{m}_{8},{m}_{10}\} $$ \{{m}_{18},{m}_{1}\} $
    $ {e}_{15} $$ \{{m}_{14},{m}_{15}\} $$ \{{m}_{16},{m}_{18}\} $$ \{{m}_{1},{m}_{9}\} $
    $ {e}_{16} $$ \{{m}_{22},{m}_{23}\} $$ \{{m}_{24},{m}_{1}\} $$ \{{m}_{9},{m}_{17}\} $
    $ {e}_{17} $$ \{{m}_{24},{m}_{73}\} $$ \{{m}_{1},{m}_{3}\} $$ \{{m}_{11},{m}_{19}\} $
    $ {e}_{18} $$ \{{m}_{73},{m}_{1}\} $$ \{{m}_{2},{m}_{4}\} $$ \{{m}_{12},{m}_{20}\} $
    $ \cdots $$ \cdots $$ \cdots $$ \cdots $
    下载: 导出CSV

    表  3  $ 2- $分裂认证码$ \left(\mathrm{3,97,388}\right) $

    $ {s}_{1} $$ {s}_{2} $$ {s}_{3} $
    $ {e}_{1} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{33},{m}_{34}\} $$ \{{m}_{65},{m}_{66}\} $
    $ {e}_{2} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{35},{m}_{36}\} $$ \{{m}_{67},{m}_{68}\} $
    $ {e}_{3} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{37},{m}_{38}\} $$ \{{m}_{69},{m}_{70}\} $
    $ {e}_{4} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{39},{m}_{40}\} $$ \{{m}_{71},{m}_{72}\} $
    $ {e}_{5} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{41},{m}_{42}\} $$ \{{m}_{73},{m}_{74}\} $
    $ {e}_{6} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{43},{m}_{44}\} $$ \{{m}_{75},{m}_{76}\} $
    $ {e}_{7} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{45},{m}_{46}\} $$ \{{m}_{77},{m}_{78}\} $
    $ {e}_{8} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{47},{m}_{48}\} $$ \{{m}_{79},{m}_{80}\} $
    $ {e}_{9} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{49},{m}_{50}\} $$ \{{m}_{81},{m}_{82}\} $
    $ {e}_{10} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{51},{m}_{52}\} $$ \{{m}_{83},{m}_{84}\} $
    $ {e}_{11} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{53},{m}_{54}\} $$ \{{m}_{85},{m}_{86}\} $
    $ {e}_{12} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{55},{m}_{56}\} $$ \{{m}_{87},{m}_{88}\} $
    $ {e}_{13} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{57},{m}_{58}\} $$ \{{m}_{89},{m}_{90}\} $
    $ {e}_{14} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{59},{m}_{60}\} $$ \{{m}_{91},{m}_{92}\} $
    $ {e}_{15} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{61},{m}_{62}\} $$ \{{m}_{93},{m}_{94}\} $
    $ {e}_{16} $$ \{{m}_{1},{m}_{2}\} $$ \{{m}_{63},{m}_{64}\} $$ \{{m}_{95},{m}_{96}\} $
    $ {e}_{17} $$ \{{m}_{97},{m}_{2}\} $$ \{{m}_{1},{m}_{15}\} $$ \{{m}_{12},{m}_{26}\} $
    $ {e}_{18} $$ \{{m}_{1},{m}_{18}\} $$ \{{m}_{10},{m}_{20}\} $$ \{{m}_{14},{m}_{31}\} $
    $ {e}_{19} $$ \{{m}_{25},{m}_{9}\} $$ \{{m}_{1},{m}_{11}\} $$ \{{m}_{5},{m}_{20}\} $
    $ {e}_{20} $$ \{{m}_{5},{m}_{22}\} $$ \{{m}_{14},{m}_{24}\} $$ \{{m}_{18},{m}_{1}\} $
    $ {e}_{21} $$ \{{m}_{24},{m}_{17}\} $$ \{{m}_{97},{m}_{1}\} $$ \{{m}_{7},{m}_{19}\} $
    $ {e}_{22} $$ \{{m}_{18},{m}_{11}\} $$ \{{m}_{27},{m}_{28}\} $$ \{{m}_{1},{m}_{13}\} $
    $ {e}_{23} $$ \{{m}_{6},{m}_{32}\} $$ \{{m}_{15},{m}_{18}\} $$ \{{m}_{22},{m}_{1}\} $
    $ {e}_{24} $$ \{{m}_{1},{m}_{11}\} $$ \{{m}_{3},{m}_{29}\} $$ \{{m}_{8},{m}_{30}\} $
    $ \cdots $$ \cdots $$ \cdots $$ \cdots $
    下载: 导出CSV

    表  4  本文与其他文献构造方法比较

    文献[4]通过EDF构造可裂BIBD得到最优分裂认证码,在该文献中给出的例子的信源数2,少于本文的信源数3。
    文献[6]文献[6]构造的分裂认证码不是最优的,本文所构造的分裂码是最优的。
    文献[18]该文献给出了可裂设计与分裂认证码的对应定理,但并没有给出具体的构造方法,只给出了部分简单的例子,并且信源数较少。本文对GDD加权后得到可裂GDD,通过可裂GDD得到可裂BIBD,构造方法巧妙,组合结构清楚,给出了信源数相对较多的分裂认证码的例子,并针对具体实例,对构造的合理性进行了仿真分析。
    下载: 导出CSV
  • [1] GILBERT E N, MACWILLIAMS F J, and SLOANE N J A. Codes which detect deception[J]. The Bell System Technical Journal, 1974, 53(3): 405–424. doi: 10.1002/j.1538-7305.1974.tb02751.x
    [2] SIMMONS G J. Authentication Theory/Coding Theory[M]. BLAKLEY G R, CHAUM D. Advances in Cryptology: Proceedings of CRYPTO 84. Berlin Heidelberg: Springer-Verlag, 1985: 411–431.
    [3] 王永传, 杨义先. 分裂认证码与纠错码[J]. 通信保密, 1999(1): 64–66.

    WANG Yongchuan and YANG Yixian. Spliting authentication codes with and error-correcting codes[J]. Information Security and Communications Privacy, 1999(1): 64–66.
    [4] OGATA W, KUROSAWA K, STINSON D R, et al. New combinatorial designs and their applications to authentication codes and secret sharing schemes[J]. Discrete Mathematics, 2004, 279(1/3): 383–405.
    [5] GE Gennian, MIAO Ying, and WANG Lihua. Combinatorial constructions for optimal splitting authentication codes[J]. Discrete Mathematics, 2005, 18(4): 663–678.
    [6] 刘金龙, 许宗泽. CARTESIAN认证码的原理及构造[J]. 电子与信息学报, 2008, 30(1): 93–95.

    LIU Jinlong and XU Zongze. On the theory and construction of CARTESIAN authentication codes[J]. Journal of Electronics &Information Technology, 2008, 30(1): 93–95.
    [7] 裴定一. 消息认证码[M]. 合肥: 中国科学技术大学出版社, 2009.

    PEI Dingyi. Message Authentication Codes[M]. Hefei: China University of science and Technology Press, 2009.
    [8] WANG Jinhua and SU Renwang. Further results on the existence of splitting BIBDs and application to authentication codes[J]. Acta Applicandae Mathematicae, 2010, 109(3): 791–803. doi: 10.1007/s10440-008-9346-8
    [9] LIANG Miao, JI Lijun, and ZHANG Jingcai. Some new classes of 2-fold optimal or perfect splitting authentication codes[J]. Cryptography and Communications, 2017, 9(3): 407–430. doi: 10.1007/s12095-015-0179-9
    [10] LI Mingchao, LIANG Miao, DU Beiliang, et al. A construction for optimal c-splitting authentication and secrecy codes[J]. Designs, Codes and Cryptography, 2018, 86(8): 1739–1755. doi: 10.1007/s10623-017-0421-x
    [11] COLBOURN C J and DINITZ J H. Handbook of Combinatorial Designs[M]. Boca Raton: CRC Press, 1996.
    [12] 沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 2008.

    SHEN Hao. Theory of Combinatorial Designs[M]. Shanghai: Shanghai Jiao Tong University Press, 2008.
    [13] SAURABH S and SINHA K. Some new resolvable group divisible designs[J/OL]. Communications in Statistics-Theory and Methods, 2020. doi: 10.1080/03610926.2020.1817487.
    [14] FORBES A D. Group divisible designs with block size four and type g ub1(gu/2)1[J]. Graphs and Combinatorics, 2020, 36(6): 1687–1703. doi: 10.1007/s00373-020-02213-5
    [15] ABEL R J R, BUNJAMIN Y A, and COMBE D. Some new group divisible designs with block size 4 and two or three group sizes[J]. Journal of Combinatorial Designs, 2020, 28(8): 614–628. doi: 10.1002/jcd.21719
    [16] XU Hengzhou, YU Zhongyang, FENG Dan, et al. New construction of partial geometries based on group divisible designs and their associated LDPC codes[J]. Physical Communication, 2020, 39: 100970. doi: 10.1016/j.phycom.2019.100970
    [17] HUANG Yupei, LIU Chiaan, CHANG Y, et al. A family of group divisible designs with arbitrary block sizes[J]. Taiwanese Journal of Mathematics, 2019, 23(6): 1291–1302.
    [18] HUBER M. Combinatorial bounds and characterizations of splitting authentication codes[J]. Cryptography and Communications, 2010, 2(2): 173–185. doi: 10.1007/s12095-010-0020-4
    [19] VISHNU V I and PUTHALI H B. Techniques for validating and sharing secrets[P]. USA, Patent, 20120159645, 2012.
    [20] 王晨宇, 汪定, 王菲菲, 等. 面向多网关的无线传感器网络多因素认证协议[J]. 计算机学报, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683

    WANG Chenyu, WANG Ding, WANG Feifei, et al. Multi-factor user authentication scheme for multi-gateway wireless sensor networks[J]. Chinese Journal of Computers, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683
    [21] LI Zengpeng, WANG Ding, and MORAIS E. Quantum-safe round-optimal password authentication for mobile devices[J/OL]. IEEE Transactions on Dependable and Secure Computing, 2020. doi: 10.1109/TDSC.2020.3040776.
    [22] WANG Chenyu, WANG Ding, XU Guoai, et al. Efficient privacy-preserving user authentication scheme with forward secrecy for industry 4.0[J/OL]. Science China (Information Sciences). https://kns.cnki.net/kcms/detail/11.5847.TP.20210820.1521.008.html, 2021.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  570
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-10-29
  • 网络出版日期:  2021-11-06
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回