高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶傅里叶变换的低信噪比线性调频信号参数快速估计算法

刘利民 李豪欣 李琦 韩壮志 高振斌

刘利民, 李豪欣, 李琦, 韩壮志, 高振斌. 基于分数阶傅里叶变换的低信噪比线性调频信号参数快速估计算法[J]. 电子与信息学报, 2021, 43(10): 2798-2804. doi: 10.11999/JEIT200973
引用本文: 刘利民, 李豪欣, 李琦, 韩壮志, 高振斌. 基于分数阶傅里叶变换的低信噪比线性调频信号参数快速估计算法[J]. 电子与信息学报, 2021, 43(10): 2798-2804. doi: 10.11999/JEIT200973
Limin LIU, Haoxin LI, Qi LI, Zhuangzhi HAN, Zhenbin GAO. A Fast Signal Parameter Estimation Algorithm for Linear Frequency Modulation Signal under Low Signal-to-Noise Ratio Based on Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2798-2804. doi: 10.11999/JEIT200973
Citation: Limin LIU, Haoxin LI, Qi LI, Zhuangzhi HAN, Zhenbin GAO. A Fast Signal Parameter Estimation Algorithm for Linear Frequency Modulation Signal under Low Signal-to-Noise Ratio Based on Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2798-2804. doi: 10.11999/JEIT200973

基于分数阶傅里叶变换的低信噪比线性调频信号参数快速估计算法

doi: 10.11999/JEIT200973
基金项目: 国家自然科学基金(61601496),河北省自然科学基金(F2019506037)
详细信息
    作者简介:

    刘利民:男,1971年生,教授,博士生导师,研究方向为雷达对抗、雷达信号处理

    李豪欣:女,1997年生,硕士,研究方向为雷达信号处理

    李琦:男,1974年生,教授,硕士生导师,研究方向为雷达信号处理、信息与编码理论

    韩壮志:男,1972年生,副教授,硕士生导师,研究方向为雷达信号处理、武器系统性能评估

    高振斌:男,1973年生,教授,硕士生导师,研究方向为雷达信号处理

    通讯作者:

    李琦 liqi@hebut.edu.cn

  • 中图分类号: TN957.51

A Fast Signal Parameter Estimation Algorithm for Linear Frequency Modulation Signal under Low Signal-to-Noise Ratio Based on Fractional Fourier Transform

Funds: The National Natural Science Foundation of China (61601496), The Nature Science Foundation of Hebei Province (F2019506037)
  • 摘要: 针对低信噪比线性调频信号参数估计精度低且运算量大的问题,该文提出一种基于高效分数阶傅里叶变换(FRFT)和分数阶频谱4阶原点矩的快速估计算法。该算法通过判断调频斜率的正负,以确定旋转阶次所在初始区间;进而应用高效FRFT获得初始旋转阶次;最终利用分数阶频谱4阶原点矩,进一步确定搜索区间和步长,实现精准搜索,从而满足参数精度的要求。实验结果表明,该算法尤其适合用于低信噪比情况下的线性调频(LFM)信号检测与参数的准确估计,而且运算量较低。
  • 图  1  FRFT频谱幅度与阶次关系图

    图  2  归一化幅度对比图

    图  3  FRFT与W-V分布关系图

    图  4  LFM信号时频分布

    图  5  改进算法流程图

    图  6  算法检测性能曲线

    图  7  两种算法对比

    表  1  3种算法对比仿真结果

    估计方法允许阶次误差$\hat k\left({\rm{Hz /t}} \right)$$\hat f\left( {{\rm{Hz}}} \right)$${k_{{{\rm{error}}}}}\left( \% \right)$${f_{{{\rm{error}}}}}\left( \% \right)$FRFT运算次数
    高效FRFT算法1537.20001580.353.72445.35653
    FRFT 2维搜索<0.01001104.00001511.110.40100.7417201
    FRFT 2维搜索<0.00101024.60001501.82.45800.12142001
    FRFT 2维搜索<0.00011003.90001501.50.39500.100720001
    改进搜索算法<0.0100940.20611510.25.97940.68007
    改进搜索算法<0.0010993.16241501.10.68380.075420
    改进搜索算法<0.00011002.30001500.80.22810.053143
    下载: 导出CSV
  • [1] DUAN Yu, WANG Jinzhen, SU Shaoying, et al. Detection of LFM signals in low SNR based on STFT and wavelet denoising[C]. 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, 2014: 921–925.
    [2] YIN Qingbo, SHEN Liran, LU Mingyu, et al. Selection of optimal window length using STFT for quantitative SNR analysis of LFM signal[J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 26–35. doi: 10.1109/JSEE.2013.00004
    [3] XU Fenfei, BAO Qinglong, CHEN Zengping, et al. Parameter estimation of multi-component LFM signals based on STFT+Hough transform and fractional fourier transform[C]. The 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 2018: 839–842.
    [4] ZHANG Zhichao. Linear canonical Wigner distribution based noisy LFM signals detection through the output SNR improvement analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(21): 5527–5542. doi: 10.1109/TSP.2019.2941071
    [5] WU Yushuang and LI Xiukun. Elimination of cross-terms in the Wigner–Ville distribution of multi-component LFM signals[J]. IET Signal Processing, 2017, 11(6): 657–662. doi: 10.1049/iet-spr.2016.0358
    [6] ZHANG Zhichao. The optimal linear canonical Wigner distribution of noisy linear frequency-modulated signals[J]. IEEE Signal Processing Letters, 2019, 26(8): 1127–1131. doi: 10.1109/LSP.2019.2922510
    [7] HUANG Xiang, ZHANG Linrang, ZHANG Juan, et al. Efficient angular chirp-Fourier transform and its application to high-speed target detection[J]. Signal Processing, 2019, 164: 234–248. doi: 10.1016/j.sigpro.2019.06.011
    [8] YANG Tiantian, SHAO Jie, CHEN Yongliang, et al. Parameter estimation of multi component LFM signals based on nonlinear mode decomposition and FRFT[C]. The 10th International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 2018: 204–209.
    [9] MIAO Hongxia, ZHANG Feng, and TAO Ran. Fractional Fourier analysis using the Möbius inversion formula[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3181–3196. doi: 10.1109/TSP.2019.2912878
    [10] LIU Yifei, ZHAO Yuan, ZHU Jun, et al. Iterative high-accuracy parameter estimation of uncooperative OFDM-LFM radar signals based on FRFT and fractional autocorrelation interpolation[J]. Sensors, 2018, 18(10): 3550. doi: 10.3390/s18103550
    [11] 赵兴浩, 邓兵, 陶然. 分数阶傅里叶变换数值计算中的量纲归一化[J]. 北京理工大学学报, 2005, 25(4): 360–364. doi: 10.3969/j.issn.1001-0645.2005.04.019

    ZHAO Xinghao, DENG Bing, and TAO Ran. Dimensional normalization in the digital computation of the fractional fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4): 360–364. doi: 10.3969/j.issn.1001-0645.2005.04.019
    [12] 仇兆炀, 陈蓉, 汪一鸣. 基于FRFT的线性调频信号欠采样快速检测方法[J]. 电子学报, 2012, 40(11): 2165–2170.

    QIU Zhaoyang, CHEN Rong, and WANG Yiming. Fast detection of LFM signal based on FRFT and sub-nyquist sampling[J]. Acta Electronica Sinica, 2012, 40(11): 2165–2170.
    [13] ALDIMASHKI O and SERBES A. Performance of chirp parameter estimation in the fractional fourier domains and an algorithm for fast chirp-rate estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3685–3700. doi: 10.1109/TAES.2020.2981268
    [14] 黄响, 唐世阳, 张林让, 等. 一种基于高效FRFT的LFM信号检测与参数估计快速算法[J]. 电子与信息学报, 2017, 39(12): 2905–2911.

    HUANG Xiang, TANG Shiyang, ZHANG Linrang, et al. A fast algorithm of LFM signal detection and parameter estimation based on efficient FRFT[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2905–2911.
    [15] 宋耀辉, 黄仰超, 张衡阳, 等. 基于FRFT的多分量LFM信号检测与参数估计方法[J]. 北京航空航天大学学报, 2020, 46(6): 1221–1228. doi: 10.13700/j.bh.1001-5965.2019.0430

    SONG Yaohui, HUANG Yangchao, ZHANG Hengyang, et al. Multicomponent LFM signal detection and parameter estimation method based on FRFT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1221–1228. doi: 10.13700/j.bh.1001-5965.2019.0430
    [16] YIN Zhiping, ZHANG Dongchen, CHEN Weidong, et al. LFM signal detection using the origin moment of fractional spectrum[C]. 2008 9th International Conference on Signal Processing, Beijing, China, 2008: 191–194.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  593
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2021-08-16
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回