高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能量收集中继安全传输网络的在线功率控制算法

雷维嘉 付安琦 雷宏江 谢显中

雷维嘉, 付安琦, 雷宏江, 谢显中. 能量收集中继安全传输网络的在线功率控制算法[J]. 电子与信息学报, 2021, 43(5): 1306-1314. doi: 10.11999/JEIT200104
引用本文: 雷维嘉, 付安琦, 雷宏江, 谢显中. 能量收集中继安全传输网络的在线功率控制算法[J]. 电子与信息学报, 2021, 43(5): 1306-1314. doi: 10.11999/JEIT200104
Weijia LEI, Anqi FU, Hongjiang LEI, Xianzhong XIE. Online Power Control Algorithm for Secure Relay Transmission Network with Energy Harvesting[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1306-1314. doi: 10.11999/JEIT200104
Citation: Weijia LEI, Anqi FU, Hongjiang LEI, Xianzhong XIE. Online Power Control Algorithm for Secure Relay Transmission Network with Energy Harvesting[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1306-1314. doi: 10.11999/JEIT200104

能量收集中继安全传输网络的在线功率控制算法

doi: 10.11999/JEIT200104
基金项目: 国家自然科学基金(61971080, 61471076);重庆市教委科学技术研究重点项目(KJZD-K201800603, KJZD-M201900602);陕西省信息通信网络及安全重点实验室开放课题基金(ICNS201807)
详细信息
    作者简介:

    雷维嘉:男,1969年生,博士,教授,主要研究方向为无线通信和移动通信技术

    付安琦:女,1996年生,硕士生,研究方向为无线通信和物理层安全

    通讯作者:

    雷宏江 leihj@cqupt.edu.cn

  • 中图分类号: TN918

Online Power Control Algorithm for Secure Relay Transmission Network with Energy Harvesting

Funds: The National Natural Science Foundation of China (61971080, 61471076), The Key Project of Science and Technology Research of Chongqing Education Commission (KJZD-K201800603, KJZD-M201900602), The Open Fund of the Shaanxi Key Laboratory of Information Communication Network and Security (ICNS201807)
  • 摘要: 针对源节点和中继节点均采用收集能量供电的放大转发中继网络,考虑两个目的节点之间信息相互保密的场景,该文提出最大化长期时间平均保密速率的源节点和中继节点发送功率联合优化算法。由于能量到达和信道状态是随机过程,该问题是一个随机优化问题。利用Lyapunov优化框架将电池操作和能量使用约束下的长期优化问题转化为每时隙的“虚队列漂移加惩罚”最小化问题,并求解。仿真结果显示该文提出的算法在长期平均保密速率上相较于对比算法具有显著的优势,同时算法仅依赖于当前的电池状态和信道状态信息做出决策,是一种实用的、低复杂度的算法。
  • 图  1  具有能量收集装置的两跳传输模型

    图  2  与对比算法平均保密速率的比较

    图  3  能量虚队列偏移量对系统性能的影响

    图  4  能量到达率对长期平均保密速率的影响

    图  5  权重V, U对系统性能的影响

    图  6  电池电量与权重V的关系,U=10

  • [1] ALTINEL D and KURT G K. Modeling of hybrid energy harvesting communication systems[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 523–534. doi: 10.1109/TGCN.2019.2908086
    [2] OZEL O and ULUKUS S. Achieving AWGN capacity under stochastic energy harvesting[J]. IEEE Transactions on Information Theory, 2012, 58(10): 6471–6483. doi: 10.1109/TIT.2012.2204389
    [3] HUANG Chuan, ZHANG Rui, and CUI Shuguang. Throughput maximization for the Gaussian relay channel with energy harvesting constraints[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(8): 1469–1479. doi: 10.1109/JSAC.2013.130811
    [4] HO C K and ZHANG Rui. Optimal energy allocation for wireless communications with energy harvesting constraints[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4808–4818. doi: 10.1109/TSP.2012.2199984
    [5] 李云, 唐英, 刘涵霄. 基于Q-Learning算法的毫微微小区功率控制算法[J]. 电子与信息学报, 2019, 41(11): 2557–2564. doi: 10.11999/JEIT181191

    LI Yun, TANG Ying, and LIU Hanxiao. Power control algorithm based on Q-Learning in femtocell[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2557–2564. doi: 10.11999/JEIT181191
    [6] NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Williston, USA: Morgan & Claypool, 2010: 45–62.
    [7] LI Yun, XIA Shichao, ZHENG Mengyan, et al. Lyapunov optimization based trade-off policy for mobile cloud offloading in heterogeneous wireless networks[J]. IEEE Transactions on Cloud Computing, To be publised. doi: 10.1109/TCC.2019.2938504
    [8] AMIRNAVAEI F and DONG Min. Online power control optimization for wireless transmission with energy harvesting and storage[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4888–4901. doi: 10.1109/TWC.2016.2548459
    [9] DONG Min, LI Wen, and AMIRNAVAEI F. Online joint power control for two-hop wireless relay networks with energy harvesting[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 463–478. doi: 10.1109/TSP.2017.2768040
    [10] ZHU Fengchao and YAO Minli. Improving physical-layer security for CRNs using SINR-based cooperative beamforming[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1835–1841. doi: 10.1109/TVT.2015.2412152
    [11] 张波, 黄开枝. 异构携能通信网络中基于人工噪声辅助的鲁棒安全传输方案[J]. 电子与信息学报, 2019, 41(1): 1–8. doi: 10.11999/JEIT180269

    ZHANG Bo and HUANG Kaizhi. Robust secure transmission scheme based on artificial noise-aided for heterogeneous networks with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2019, 41(1): 1–8. doi: 10.11999/JEIT180269
    [12] JAMEEL F, WYNE S, KADDOUM G, et al. A comprehensive survey on cooperative relaying and jamming strategies for physical layer security[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2734–2771. doi: 10.1109/COMST.2018.2865607
    [13] HOANG T M, DUONG T Q, VO N S, et al. Physical layer security in cooperative energy harvesting networks with a friendly jammer[J]. IEEE Wireless Communications Letters, 2017, 6(2): 174–177. doi: 10.1109/LWC.2017.2650224
    [14] 谢国芳. 一般实系数四次方程的谢国芳求根公式[EB/OL]. https://wenku.baidu.com/view/2ac910223169a4517723a39a.html, 2013.

    XIE Guofang. Formula for finding roots of quartic equations with general real coefficients[EB/OL]. https://wenku.baidu.com/view/2ac910223169a4517723a39a.html, 2013.
    [15] BENNER P and BYERS R. An exact line search method for solving generalized continuous-time algebraic Riccati equations[J]. IEEE Transactions on Automatic Control, 1998, 43(1): 101–107. doi: 10.1109/9.654908
  • 加载中
图(6)
计量
  • 文章访问数:  879
  • HTML全文浏览量:  247
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 修回日期:  2020-11-27
  • 网络出版日期:  2020-12-05
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回