高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于欠定盲源分离的同步跳频信号网台分选

李红光 郭英 张东伟 杨银松 齐子森 眭萍

李红光, 郭英, 张东伟, 杨银松, 齐子森, 眭萍. 基于欠定盲源分离的同步跳频信号网台分选[J]. 电子与信息学报, 2021, 43(2): 319-328. doi: 10.11999/JEIT190920
引用本文: 李红光, 郭英, 张东伟, 杨银松, 齐子森, 眭萍. 基于欠定盲源分离的同步跳频信号网台分选[J]. 电子与信息学报, 2021, 43(2): 319-328. doi: 10.11999/JEIT190920
Hongguang LI, Ying GUO, Dongwei ZHANG, Yinsong YANG, Zisen QI, Ping SUI. Synchronous Frequency Hopping Signal Network Station Sorting Based on Underdetermined Blind Source Separation[J]. Journal of Electronics & Information Technology, 2021, 43(2): 319-328. doi: 10.11999/JEIT190920
Citation: Hongguang LI, Ying GUO, Dongwei ZHANG, Yinsong YANG, Zisen QI, Ping SUI. Synchronous Frequency Hopping Signal Network Station Sorting Based on Underdetermined Blind Source Separation[J]. Journal of Electronics & Information Technology, 2021, 43(2): 319-328. doi: 10.11999/JEIT190920

基于欠定盲源分离的同步跳频信号网台分选

doi: 10.11999/JEIT190920
详细信息
    作者简介:

    李红光:男,1986年生,工程师,博士,研究方向为信息对抗理论、通信信号处理

    郭英:女,1961年生,教授,博士,研究方向为信息对抗理论、通信信号处理、自适应信号处理

    张东伟:男,1987年生,讲师,博士,研究方向为通信信号处理

    杨银松:男,1994年生,助教,硕士,研究方向为通信信号处理、电子对抗装备维修

    齐子森:男,1982年生,副教授,博士,研究方向为通信信号侦察处理、阵列信号处理

    眭萍:女,1991年生,工程师,博士,研究方向为通信信号侦察处理

    通讯作者:

    李红光 toumingwings@163.com

  • 中图分类号: TP391

Synchronous Frequency Hopping Signal Network Station Sorting Based on Underdetermined Blind Source Separation

  • 摘要:

    针对同步跳频(FH)网台分选问题,该文提出一种基于时频域单源点检测的欠定盲源分离(UBSS)分选算法。该算法首先对观测信号时频变换,利用自适应阈值去噪算法消除时频矩阵背景噪声,增加算法抗噪性能,然后根据信号绝对方位差算法进行单源点检测,有效保证单源点的充分稀疏性,并通过改进的模糊值聚类算法完成混合矩阵和2维波达方向估计,降低噪声和样本集分布差异对聚类结果的影响,提高估计精度。最后采用变步长的稀疏自适应子空间追踪(SASP)算法对源信号进行重构恢复。仿真实验表明,该算法在低信噪比(SNR)条件下,跳频信号波达方向估计和恢复精度较高,能够有效完成同步跳频信号的盲分离。

  • 图  1  FH信号L型阵列接收示意图

    图  2  STFT时频变换去噪前后的时频图

    图  3  4种检测算法的时频比散点图

    图  4  不同信噪比下阈值${\varepsilon _\alpha }$${A_{{\rm{MSE}}}}$的影响

    图  5  不同信噪比下4种算法的${A_{{\rm{MSE}}}}$

    图  6  不同信噪比下3种恢复算法的时域信号${S_{{\rm{SIR}}}}$

    图  7  不同信噪比下4种混合矩阵恢复的时域信号${S_{{\rm{SIR}}}}$

    图  8  不同信噪比下两种算法估计的DOA均方根误差

    表  1  各FH信源跳图案和方位参数

    FH跳图案(MHz)方位/俯仰角(º)
    ${S_1}$[1.5,4.5,6.5]12/14
    ${S_2}$[4.0,2.5,7.0]31/28
    ${S_3}$[6,5.5,7.5]57/50
    ${S_4}$[8.0,5.0,3.5]84/77
    下载: 导出CSV

    表  2  不同信噪比下相邻两跳的DOA和RMSE(°)

    SNR=5 dBSNR=10 dBSNR=15 dBSNR=20 dB
    第1跳FH信号DOA(º)${S_1}$11.9198/15.161511.8283/14.422611.8012/14.479811.5617/13.2689
    ${S_2}$31.3672/29.219331.6120/28.681031.1760/28.361731.7793/28.2577
    ${S_3}$58.7108/51.081356.8921/50.689656.6015/50.612957.5726/50.4814
    ${S_4}$84.6317/75.953885.5950/77.822185.6958/76.745084.7968/76.1847
    RMSE1.46341.14780.98830.9027
    第2跳FH信号DOA(º)${S_1}$11.8629/14.121512.1792/13.924311.4028/14.805811.0216/14.8689
    ${S_2}$30.9463/29.448130.7387/27.383230.2968/28.618930.2267/28.1946
    ${S_3}$56.7013/49.263157.7341/51.102656.1284/50.389157.3642/50.1739
    ${S_4}$85.7185/78.539185.8328/76.348184.9185/77.696584.6301/77.2943
    RMSE1.42191.22731.01530.8653
    下载: 导出CSV
  • 张东伟, 郭英, 齐子森, 等. 多跳频信号波达方向与极化状态联合估计算法[J]. 电子与信息学报, 2015, 37(7): 1695–1701. doi: 10.11999/JEIT141315

    ZHANG Dongwei, GUO Ying, QI Zisen, et al. Joint estimation algorithm of direction of arrival and polarization for multiple frequency-hopping signals[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1695–1701. doi: 10.11999/JEIT141315
    KOLDOVSKÝ Z, TICHAVSKÝ P, PHAN A H, et al. A two-stage MMSE beamformer for underdetermined signal separation[J]. IEEE Signal Processing Letters, 2013, 20(12): 1227–1230. doi: 10.1109/LSP.2013.2285932
    ZOU Liang, CHEN Xun, JI Xiangyang, et al. Underdetermined joint blind source separation of multiple datasets[J]. IEEE Access, 2017, 5: 7474–7487. doi: 10.1109/ACCESS.2017.2695497
    SU Qiao, WEI Yimin, DENG Changliang, et al. Fast extraction for skewed source signals using conditional expectation[J]. Journal of Sensors, 2018, 2018: 6804197. doi: 10.1155/2018/6804197
    PENG Tianliang, CHEN Yang, and LIU Zengli. A time-frequency domain blind source separation method for underdetermined instantaneous mixtures[J]. Circuits, Systems, and Signal Processing, 2015, 34(12): 3883–3895. doi: 10.1007/s00034-015-0035-3
    BOFILL P and ZIBULEVSKY M. Underdetermined blind source separation using sparse representations[J]. Signal Processing, 2001, 81(11): 2353–2362. doi: 10.1016/S0165-1684(01)00120-7
    YE Fang, CHEN Jie, GAO Lipeng, et al. A mixing matrix estimation algorithm for the time-delayed mixing model of the underdetermined blind source separation problem[J]. Circuits, Systems, and Signal Processing, 2019, 38(4): 1889–1906. doi: 10.1007/s00034-018-0930-5
    ZHEN Liangli, PENG Dezhong, YI Zhang, et al. Underdetermined blind source separation using sparse coding[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(12): 3102–3108. doi: 10.1109/TNNLS.2016.2610960
    付卫红, 马丽芬, 李爱丽. 基于改进K-均值聚类的欠定混合矩阵盲估计[J]. 系统工程与电子技术, 2014, 36(11): 2143–2148. doi: 10.3969/j.issn.1001-506X.2014.11.06

    FU Weihong, MA Lifen, and LI Aili. Blind estimation of underdetermined mixing matrix based on improved K-means clustering[J]. Systems Engineering and Electronics, 2014, 36(11): 2143–2148. doi: 10.3969/j.issn.1001-506X.2014.11.06
    COBOS M and LOPEZ J J. Maximum a posteriori binary mask estimation for underdetermined source separation using smoothed posteriors[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(7): 2059–2064. doi: 10.1109/TASL.2012.2195654
    ZIBULEVSKY M and PEARLMUTTER B A. Blind source separation by sparse decomposition in a signal dictionary[J]. Neural Computation, 2001, 13(4): 863–882. doi: 10.1162/089976601300014385
    MOURAD N, REILLY J P, and KIRUBARAJAN T. Majorization-minimization for blind source separation of sparse sources[J]. Signal Processing, 2017, 131: 120–133. doi: 10.1016/j.sigpro.2016.08.015
    王川川, 曾勇虎, 汪连栋. 基于压缩感知的欠定源信号恢复算法比较[J]. 强激光与粒子束, 2018, 30(5): 053202. doi: 10.11884/HPLPB201830.170354

    WANG Chuanchuan, ZENG Yonghu, and WANG Liandong. Comparison of source signal recovery algorithms based on compressed sensing for underdetermined blind source separation[J]. High Power Laser and Particle Beams, 2018, 30(5): 053202. doi: 10.11884/HPLPB201830.170354
    于欣永, 郭英, 张坤峰, 等. 基于盲源分离的多跳频信号网台分选算法[J]. 信号处理, 2017, 33(8): 1082–1089. doi: 10.16798/j.issn.1003-0530.2017.08.008

    YU Xinyong, GUO Ying, ZHANG Kunfeng, et al. A network sorting algorithm based on blind source separation of multi-FH signal[J]. Journal of Signal Processing, 2017, 33(8): 1082–1089. doi: 10.16798/j.issn.1003-0530.2017.08.008
    唐宁, 郭英, 张坤峰. 基于SCA的欠定跳频网台分选方法[J]. 系统工程与电子技术, 2017, 39(12): 2817–2823. doi: 10.3969/j.issn.1001-506X.2017.12.27

    TANG Ning, GUO Ying, and ZHANG Kunfeng. Underdetermined frequency-hopping network sorting method on the basis of SCA[J]. Systems Engineering and Electronics, 2017, 39(12): 2817–2823. doi: 10.3969/j.issn.1001-506X.2017.12.27
    ZHANG Chaozhu, WANG Yu, and JING Fulong. Underdetermined blind source separation of synchronous orthogonal frequency hopping signals based on single source points detection[J]. Sensors, 2017, 17(9): 2074. doi: 10.3390/s17092074
    李红光, 郭英, 张坤峰, 等. 基于自适应网格的跳频信号参数估计[J]. 系统工程与电子技术, 2019, 41(8): 1865–1872. doi: 10.3969/j.issn.1001-506X.2019.08.26

    LI Hongguang, GUO Ying, ZHANG Kunfeng, et al. Parameter estimation of frequency hopping signals based on adaptive mesh[J]. Systems Engineering and Electronics, 2019, 41(8): 1865–1872. doi: 10.3969/j.issn.1001-506X.2019.08.26
    FIJAVŽ G and MOHAR B. Rigidity and separation indices of Paley graphs[J]. Discrete Mathematics, 2004, 289(1/3): 157–161. doi: 10.1016/j.disc.2004.09.004
    付卫红, 武少豪, 刘乃安, 等. 跳频信号的欠定盲源分离[J]. 北京邮电大学学报, 2015, 38(6): 11–14. doi: 10.13190/j.jbupt.2015.06.003

    FU Weihong, WU Shaohao, LIU Naian, et al. Underdetermined blind source separation of frequency hopping signal[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(6): 11–14. doi: 10.13190/j.jbupt.2015.06.003
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1107
  • HTML全文浏览量:  399
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-15
  • 修回日期:  2020-12-29
  • 网络出版日期:  2021-01-08
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回