High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion
-
摘要:
短波链路不同传播模式的多径时延通常为0.5~2.0 ms,该文研究同一传播模式的多径时延,在考虑地磁场影响的情况下,将电离层短波传播的折射指数和射线追踪结合起来,给出了数值迭代算法,实现了用数值方法来描述电离层色散引起的多径时延,并进行了数值仿真,得出短波宽带通信的模拟带宽应为48 kHz。
Abstract:The multipath delay for different propagation mode is 0.5~2.0 ms, and the multipath delay for the same propagation mode is analyzed. Taking into account the earth magnetic field effects, the refractive index of High frequency propagation in ionosphere is combined with ray tracing, and then a new numerical iteration algorithm is given. The multipath delay caused by ionosphere dispersion is analyzed by numerical method, and the simulation is realized. Thus the analogue bandwidth of wideband communication for high frequency should be 48 kHz.
-
Key words:
- Ray tracing /
- Ionosphere dispersion /
- Multipath delay /
- Refractive index /
- Ordinary wave /
- Extraordinary wave
-
表 1 青岛-许昌链路多径时延实测结果
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 多径时延(µs) 55 11 30 8 22 8 19 31 31 53 22 30 10 40 表 2 北美大陆天波链路(80 km)路径时延和多径时延仿真结果
频率(MHz) 3.5 3.8 4.1 4.4 4.7 5.0 寻常波时延(ms) 1.228 1.312 1.875 1.916 2.000 2.144 非寻常波时延(ms) 1.544 1.540 1.624 1.868 2.180 2.308 多径时延(µs) 316 228 251 48 180 164 表 3 青岛-许昌链路路径时延和多径时延仿真结果
频率(MHz) 6.5 7.0 7.5 8.0 8.5 9.0 寻常波时延(ms) 2.760 2.912 2.928 2.996 3.168 3.480 非寻常波时延(ms) 2.516 3.052 3.000 2.928 2.960 3.164 多径时延(µs) 244 140 72 68 208 316 表 4 青岛-北京链路5点时段路径时延和多径时延
频率(MHz) 4.0 4.5 5.0 5.5 6.0 寻常波时延(ms) 2.292 2.280 2.372 2.560 2.764 非寻常波时延(ms) 2.264 2.304 2.352 2.408 2.488 多径时延(µs) 28 24 20 152 276 表 5 青岛-北京链路13点时段路径时延和多径时延
频率(MHz) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 寻常波时延(ms) 2.572 2.464 2.408 2.484 2.520 2.628 2.944 非寻常波时延(ms) 2.776 2.512 2.452 2.440 2.336 2.484 2.644 多径时延(µs) 204 48 44 40 184 144 300 表 6 青岛-北京链路21点时段路径时延和多径时延
频率(MHz) 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 寻常波时延(ms) 2.308 2.304 2.356 2.408 2.448 2.764 2.688 2.900 非寻常波时延(ms) 2.276 2.308 2.340 2.320 2.396 2.472 2.552 2.720 多径时延(µs) 32 4 16 88 52 292 136 18 表 7 青岛-上海链路5点时段路径时延和多径时延
频率(MHz) 4.0 4.5 5.0 5.5 6.0 寻常波时延(ms) 2.440 2.496 2.704 2.624 2.940 非寻常波时延(ms) 2.408 2.412 2.412 2.460 2.504 多径时延(µs) 32 84 292 164 436 表 8 青岛-上海链路13点时段路径时延和多径时延
频率(MHz) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 寻常波时延(ms) 2.388 2.600 2.536 2.516 2.548 2.580 2.676 2.812 2.716 2.792 非寻常波时延(ms) 2.463 2.532 2.420 2.464 2.452 2.540 2.528 2.504 2.608 2.768 多径时延(µs) 85 68 116 52 96 40 148 308 108 24 表 9 青岛-上海链路21点时段路径时延和多径时延
频率(MHz) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 寻常波时延(ms) 2.536 2.568 2.616 2.684 2.572 2.912 3.160 非寻常波时延(ms) 2.472 2.492 2.528 2.572 2.608 2.572 2.788 多径时延(µs) 64 76 88 112 36 340 372 表 10 青岛-重庆链路5点时段路径时延和多径时延
频率(MHz) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 寻常波时延(ms) 5.304 5.296 5.292 5.308 5.324 5.320 5.292 5.372 5.472 非寻常波时延(ms) 5.296 5.224 5.276 5.288 5.292 5.304 5.240 5.364 5.320 多径时延(µs) 8 72 16 20 32 16 52 8 152 表 11 青岛-重庆链路13点时段路径时延和多径时延
频率(MHz) 11.5 12.0 12.5 13.0 13.5 14.0 14.5 寻常波时延(ms) 5.328 5.228 5.316 5.404 5.372 5.360 5.272 非寻常波时延(ms) 5.496 5.196 5.144 5.256 5.388 5.364 5.340 多径时延(µs) 168 32 172 148 16 4 68 频率(MHz) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 寻常波时延(ms) 5.332 5.328 5.332 5.332 5.368 5.380 5.420 非寻常波时延(ms) 5.352 5.280 5.324 5.348 5.360 5.356 5.348 多径时延(µs) 20 48 8 16 8 24 72 表 12 青岛-重庆链路21点时段路径时延和多径时延
频率(MHz) 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 寻常波时延(ms) 5.226 5.235 5.241 5.304 5.259 5.259 5.280 5.292 非寻常波时延(ms) 5.243 5.238 5.253 5.253 5.244 5.274 5.284 5.295 多径时延(µs) 17 3 12 51 15 15 4 3 频率(MHz) 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 寻常波时延(ms) 5.248 5.308 5.260 5.284 5.340 5.356 5.428 5.388 非寻常波时延(ms) 5.256 5.292 5.300 5.308 5.304 5.312 5.352 5.340 多径时延(µs) 8 16 40 24 36 44 76 48 表 13 青岛-北京链路多径时延的期望和标准差
时段(点) 5 13 21 期望(µs) 100.0 137.7 79.8 标准差(µs) 101.0 99.4 90.1 表 14 青岛-上海链路多径时延的期望和标准差
时段(点) 5 13 21 期望(µs) 201.6 104.5 155.4 标准差(µs) 146.4 76.6 128.9 表 15 青岛-重庆链路多径时延的期望和标准差
时段(点) 5 13 21 期望(µs) 41.8 57.4 25.8 标准差(µs) 43.9 58.7 20.5 -
WANG Jinlong, LI Shaoqian, and WEI Jibo. Wideband, intelligent and integrated HF communications[J]. China Communications, 2018, 15(9): iii–v. doi: 10.1109/CC.2018.8456446. LOBOVA E O and KANDAUROV N A. Experimental results of dispersion distortion compensation of wideband signals with a device based on a digital filter bank[C]. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706758. LOBOV E M and SHUBIN D N. A narrow-band interference compensation device based on a digital filter bank for broadband low-energy HF radio lines[C]. 2019 Systems of signals generating and processing in the field of on board communication, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706791. VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part I: Deterministic model[R]. NTIA Report 88–240, 1988. VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅱ: Stochastic model[R]. NTIA Report 90–255, 1990. VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅲ: Transfer function[R]. NTIA Report 93–284, 1992. VOGLER L E and HOFFMEYER J A. A model for wideband HF propagation channels[J]. Radio Science, 1993, 28(6): 1131–1142. doi: 10.1029/93RS01607 MIL-STD-188-110D Interoperability and performance standards for data modems[S]. 2017: 142–145. NELSON R, JORGENSON M, and JOHNON R W. Extension of wideband HF capabilities[EB/OL]. https://www.hfindustry.com/account/my-account. 2014.5. DAVIS K. Ionospheric Radio[M]. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1990: 18–20. 索玉成. 电离层短波射线追踪[J]. 空间科学学报, 1993, 13(4): 306–312.SUO Yucheng. Short wave ray tracing in the ionosphere[J]. Chinese Journal of Space Science, 1993, 13(4): 306–312. 柳文, 焦培南, 王世凯, 等. 电离层短波三维射线追踪及其应用研究[J]. 电波科学学报, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007LIU Wen, JIAO Peinan, WANG Shikai, et al. Short wave ray tracing in the ionosphere and its application[J]. Chinese Journal of Radio Science, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007 THAYAPARAN T, DUPONT D, IBRAHIM Y, et al. High-frequency ionospheric monitoring system for over-the-horizon radar in Canada[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6372–6384. doi: 10.1109/TGRS.2019.2905757 THAYAPARAN T, IBRAHIM Y, POLAK J, et al. High-frequency over-the-horizon radar in Canada[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1700–1704. doi: 10.1109/LGRS.2018.2856185 KLIMENKO M V, CHIRIK N V, KOTOVA D S, et al. Development of improved ionospheric empirical model and software for HF ray tracing[C]. 2018 2nd URSI Atlantic Radio Science Meeting, Meloneras, Spain, 2018. doi: 10.23919/URSI-AT-RASC.2018.8471348. JONES R M and STEPHENSON J J. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere[R]. OT Report 75–76, 1975. 攸阳, 钱志刚, 李吉宁, 等. 短波时差定位中电离层参数对定位影响仿真[J]. 电波科学学报, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002YOU Yang, QIAN Zhigang, LI Jining, et al. Simulation on the effect of ionospheric parameters on TDOA location in short wave[J]. Chinese Journal of Radio Science, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002 HUANG Xiaoguo. Extended beam approximation for high-frequency wave propagation[J]. IEEE Access, 2018, 6: 37214–37224. doi: 10.1109/ACCESS.2018.2849595 SAITO S, YAMAMOTO M, and MARUYAMA T. Arrival angle and travel time measurements of HF transequatorial propagation for plasma bubble monitoring[J]. Radio Science, 2018, 53(11): 1304–1315. doi: 10.1029/2017RS006518 TAYGUR M M, EIBERT T F, and SUKHAREVSKY I O. A bidirectional ray-tracing method for antenna coupling evaluation based on the reciprocity theorem[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6654–6664. doi: 10.1109/TAP.2018.2876680 YAN Zhaowen, ZHANG Lanlan, RAHMAN T, et al. Prediction of the HF ionospheric channel stability based on the modified ITS model[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3321–3333. doi: 10.1109/TAP.2013.2249571