基于电离层色散的短波信道多径特性分析

吴永宏^{*①2} 王程林^{①2} 任渊博^{①2} 周福厚³
 ^①(中国电波传播研究所 青岛 266107)
 ^②(青岛海洋科学与技术试点国家实验室 青岛 266235)
 ^③(山东航天电子技术研究所 烟台 264003)

摘 要:短波链路不同传播模式的多径时延通常为0.5~2.0 ms,该文研究同一传播模式的多径时延,在考虑地磁场影响的情况下,将电离层短波传播的折射指数和射线追踪结合起来,给出了数值迭代算法,实现了用数值方法来描述电离层色散引起的多径时延,并进行了数值仿真,得出短波宽带通信的模拟带宽应为48 kHz。
 关键词:射线追踪;电离层色散;多径时延;折射指数;寻常波;非寻常波
 中图分类号:TN92 文献标识码:A 文章编号:1009-5896(2020)08-2006-07
 DOI: 10.11999/JEIT190384

High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion

WU Yonghong⁽¹⁾ WANG Chenglin⁽¹⁾ REN Yuanbo⁽¹⁾ ZHOU Fuhou³

⁽¹⁾(China Research Institute of Radio Wave Propagation, Qingdao 266071, China)

²(Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China)

³(Shandong Institute of Space Electronic Technology, Yantai 264003, China)

Abstract: The multipath delay for different propagation mode is $0.5 \sim 2.0$ ms, and the multipath delay for the same propagation mode is analyzed. Taking into account the earth magnetic field effects, the refractive index of High frequency propagation in ionosphere is combined with ray tracing, and then a new numerical iteration algorithm is given. The multipath delay caused by ionosphere dispersion is analyzed by numerical method, and the simulation is realized. Thus the analogue bandwidth of wideband communication for high frequency should be 48 kHz.

Key words: Ray tracing; Ionosphere dispersion; Multipath delay; Refractive index; Ordinary wave; Extraordinary wave

1 引言

短波天波通信是通过电离层的反射来实现超视 距传输的,因而电离层成为决定短波信道特性的最 重要因素,电离层的单跳、多跳、低仰角、高仰角 等传播模式是短波信道多径的重要来源,这类多径 时延通常为0.5~2.0 ms。另外,电离层色散引起的 寻常波和非寻常波传播也会也会产生多径时延,该 多径时延通常较小,对模拟带宽为3 kHz的窄带通 信影响不大,但对于短波宽带通信^[1-3]有至关重要的影响。

Vogler等人^[4-7]提出了短波宽带信道模型,并 用2条空间链路的测试数据对模型进行了验证,美 军提出了短波宽带传输标准^[8],文献[9]在实际空间 链路验证了最大带宽为24 kHz波形的传输能力,但 这些文献都没有对多径时延与短波电波传播模型的 关系进行分析。本文将从电离层色散的角度出发, 基于国际参考电离层模型和射线追踪方法对同一传 播模式的多径时延进行仿真分析。

2 短波电波传播

电磁波在电离层中传播折射指数为[10]

$$n^{2} = 1 - \frac{X}{1 - \frac{Y_{\mathrm{T}}^{2}}{2(1 - X)} \mp \left(\frac{Y_{\mathrm{T}}^{4}}{4(1 - X)^{2}} + Y_{\mathrm{L}}^{2}\right)^{1/2}}$$
(1)

收稿日期: 2019-05-29; 改回日期: 2020-03-02; 网络出版: 2020-03-31 *通信作者: 吴永宏 wyh7426@sina.com

基金项目: 山东省支持青岛海洋科学与技术试点国家实验室重大科 技专项(2018SDKJ0210)

Foundation Item: The Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0210)

式中, $Y_{T} = \frac{eB_{T}}{m\omega}$, $Y_{L} = \frac{eB_{L}}{m\omega}$, $X = \frac{Ne^{2}}{\varepsilon_{0}m\omega^{2}}$,m为电子 质量,e为单个电子电量, ω 为电磁波工作频率, B_{L} 为地磁场在电磁波传播方向的投影, B_{T} 为地磁 场在垂直于电磁波方向的投影,N为电子密度。从 式(1)可以看出, Y_{T} , Y_{L} 和X决定折射指数的取值, 而且 Y_{T} 和 Y_{L} 受地磁场的影响,X受电子密度的影 响。因此,地磁场和电子密度的变化导致折射指数 出现两个取值,"+"号为寻常波,"-"号为非 寻常波,即电磁波进入电离层后以分裂为寻常波和 非寻常波,并以不同的速度传播,该现象被称作电 离层色散。对于短波通信链路而言,从同一付天线 辐射出去的信号,由于电离层的色散效应,寻常波 和非寻常波到达同一接收地点的时间不同,进而产 生了多径。

3 短波射线追踪

传统的光学方法只能分析高低仰角、单跳、多 跳等传播模式引起的多径时延,对于电离层色散无 能为力。射线追踪技术可以精确体现折射指数的变 化,索玉成^[11]在忽略地磁场的情况下基于射线追踪 推导了短波在电离层传播的解析表达式,文献[12–15] 探讨了射线追踪技术在天波超视距等中的应用,并 生成电离图。与前人不同,本文利用射线追踪技术 来定量分析短波天波通信链路同一模式中寻常波和 非寻常波的传播时延。由文献[16–20]知,射线追踪 表达式为

$$\frac{\mathrm{d}r}{\mathrm{d}P'} = -\frac{1}{\mathrm{c}} \frac{\partial H/\partial k_r}{\partial H/\partial \omega} \tag{2}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\mathrm{P}'} = -\frac{1}{\mathrm{rc}} \frac{\partial H/\partial k_{\theta}}{\partial H/\partial \omega} \tag{3}$$

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\mathrm{P}'} = -\frac{1}{r\mathrm{c}\sin\theta} \frac{\partial H/\partial k_{\varphi}}{\partial H/\partial\omega} \tag{4}$$

$$\frac{\partial k_r}{\mathrm{d}\mathrm{P}'} = \frac{1}{\mathrm{c}} \frac{\partial H/\partial r}{\partial H/\partial \omega} + k_\theta \frac{\mathrm{d}\theta}{\mathrm{d}\mathrm{P}'} + k_\varphi \frac{\mathrm{d}\varphi}{\mathrm{d}\mathrm{P}'} \tag{5}$$

$$\frac{\partial k_{\theta}}{\mathrm{d}\mathbf{P}'} = \frac{1}{r} \left(\frac{1}{\mathrm{c}} \frac{\partial H/\partial \theta}{\partial H/\partial \omega} - k_{\theta} \frac{\mathrm{d}r}{\mathrm{d}\mathbf{P}'} + k_{\varphi} r \cos \theta \frac{\mathrm{d}\varphi}{\mathrm{d}\mathbf{P}'} \right) \quad (6)$$

$$\frac{\partial k_{\varphi}}{\mathrm{d}\mathbf{P}'} = \frac{1}{r\sin\theta} \left(\frac{1}{\mathrm{c}} \frac{\partial H/\partial\varphi}{\partial H/\partial\omega} - k_{\varphi}\sin\theta \frac{\mathrm{d}r}{\mathrm{d}\mathbf{P}'} -k_{\varphi}r\cos\theta \frac{\mathrm{d}\theta}{\mathrm{d}\mathbf{P}'} \right)$$
(7)

其中,哈密顿算符H为

$$H = \frac{1}{2} \left[\frac{c^2}{\omega^2} \left(k_r^2 + k_\theta^2 + k_\varphi^2 \right) - \operatorname{Re}(n^2) \right]$$
(8)

式中, ω 为入射波频率,c为光速,r, θ 和 φ 为球坐

标系中的坐标, $k_r, k_\theta n k_\varphi$ 为波矢在球坐标系的分量, n^2 为电离层折射指数,dP'为射线步长。

将式(8)分别代入式(2)—式(7),可得

$$\frac{\mathrm{d}r}{\mathrm{d}\mathbf{P}'} = \frac{\mathrm{c}}{\omega}k_r\tag{9}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\mathrm{P}'} = \frac{\mathrm{c}}{r\omega} k_{\theta} \tag{10}$$

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\mathbf{P}'} = \frac{\mathrm{c}}{r\omega\sin\theta}k_{\varphi} \tag{11}$$

$$\frac{\partial k_r}{\mathrm{d}\mathbf{P}'} = \frac{1}{2} \frac{\omega}{\mathrm{c}} \frac{\partial \left(\mathrm{Re}(n^2)\right)}{\partial r} + \frac{\mathrm{c}}{r\omega} k_{\theta}^2 + \frac{\mathrm{c}}{r\omega} k_{\varphi}^2 \tag{12}$$

$$\frac{\partial k_{\theta}}{\mathrm{d}\mathbf{P}'} = \frac{1}{r} \left(\frac{1}{2} \frac{\omega}{\mathrm{c}} \frac{\partial \left(\mathrm{Re}(n^2) \right)}{\partial \theta} - \frac{\mathrm{c}}{\omega} k_r k_{\theta} + \frac{\mathrm{c}}{\omega} k_{\varphi}^2 \mathrm{ctg}\theta \right)$$
(13)

$$\frac{\partial k_{\varphi}}{\mathrm{d}\mathbf{P}'} = \frac{1}{r\sin\theta} \left(\frac{1}{2} \frac{\omega}{\mathrm{c}} \frac{\partial \left(\mathrm{Re}(n^2)\right)}{\partial \varphi} - \frac{\mathrm{c}}{\omega} k_r k_{\varphi} \sin\theta - \frac{\mathrm{c}}{\omega} k_{\theta} k_{\varphi} \cos\theta \right)$$
(14)

4 算法设计

为了便于描述射线轨迹,定义直角坐标系 (0', x', y', z')的顶点为地球球心,z'轴指向北极,x'轴指向(E0°, N0°)点,y'轴指向(E90°, N0°)点,球坐 标系(r, θ, φ)的 θ 为z'轴和r的夹角, φ 为r在(0',x', y') 平面的投影与x'轴的夹角。

定义直角坐标系(0, x, y, z)的顶点为发射点, z轴垂直向上, y轴指向北, x轴指向东,对于从地 面发射的仰角为 β 、方位角(主波束与y轴的夹角)为 α 的电磁波信号,波矢量k在该坐标系的表达式为

$$k_z = |\mathbf{k}| \sin \beta \tag{15}$$

$$k_y = |\mathbf{k}| \cos\beta \cos\alpha \tag{16}$$

$$k_x = |\mathbf{k}| \cos\beta \sin\alpha \tag{17}$$

根据直角坐标系(0, x, y, z)和球坐标系 (r, θ, φ) 的关系,有

$$k_r = k_z \tag{18}$$

$$k_{\theta} = -k_y \tag{19}$$

$$k_{\varphi} = k_x \tag{20}$$

把式(15)、式(16)、式(17)分别代入式(18)、式(19) 和式(20),可得

$$k_r = |\mathbf{k}| \sin \beta \tag{21}$$

$$k_{\theta} = -\left|\boldsymbol{k}\right| \cos\beta\cos\alpha \tag{22}$$

$$k_{\varphi} = |\mathbf{k}| \cos\beta \sin\alpha \tag{23}$$

$$\theta = 90 - \text{lat} \tag{24}$$

$$\varphi = \log$$
 (25)

其中,lat为地面收发位置的纬度,lon为地面收发 位置的经度。

由式(12)、式(13)和式(14),分别可得波矢量 的偏导数

$$\partial k_r = \left(\frac{1}{2}\frac{\omega}{c}\frac{\partial\left(\operatorname{Re}(n^2)\right)}{\partial r} + \frac{c}{r\omega}k_{\theta}^2 + \frac{c}{r\omega}k_{\varphi}^2\right)\mathrm{dP}' \quad (26)$$

$$\partial k_{\theta} = \frac{\mathrm{d}\mathbf{P}'}{r} \left(\frac{1}{2} \frac{\omega}{\mathrm{c}} \frac{\partial \left(\mathrm{Re}(n^2) \right)}{\partial \theta} - \frac{\mathrm{c}}{\omega} k_r k_{\theta} + \frac{\mathrm{c}}{\omega} k_{\varphi}^2 \mathrm{ctg}\theta \right)$$
(27)

$$\partial k_{\varphi} = \frac{\mathrm{d}\mathbf{P}'}{r\sin\theta} \left(\frac{1}{2} \frac{\omega}{c} \frac{\partial \left(\mathrm{Re}(n^2) \right)}{\partial \varphi} - \frac{c}{\omega} k_r k_{\varphi} \sin\theta - \frac{c}{\omega} k_{\theta} k_{\varphi} \cos\theta \right)$$
(28)

式中,

$$\frac{\partial \left(\operatorname{Re}(n^2)\right)}{\partial r} = \frac{n^2(r+\mathrm{d}r) - n^2(r)}{\mathrm{d}r}$$
(29)

$$\frac{\partial \left(\operatorname{Re}(n^2)\right)}{\partial \theta} = \frac{n^2(\theta + \mathrm{d}\theta) - n^2(\theta)}{\mathrm{d}\theta}$$
(30)

$$\frac{\partial \left(\operatorname{Re}(n^2) \right)}{\partial \varphi} = \frac{n^2 (\varphi + \mathrm{d}\varphi) - n^2 (\varphi)}{\mathrm{d}\varphi} \qquad (31)$$

波矢量的迭代表达式为

$$k_r = k_r + \partial k_r \tag{32}$$

$$k_{\theta} = k_{\theta} + \partial k_{\theta} \tag{33}$$

$$k_{\varphi} = k_{\varphi} + \partial k_{\varphi} \tag{34}$$

从式(26)—式(34)可以看出,波矢量与折射指 数通过电磁波射线的轨迹建立了联系,即波矢量在 电离层中随着位置的变化而变化。

由式(9)、式(10)和式(11),分别可得

$$\mathrm{d}r = \frac{c}{\omega}k_r \cdot \mathrm{d}\mathbf{P}' \tag{35}$$

$$\mathrm{d}\theta = \frac{\mathrm{c}}{r\omega} k_{\theta} \cdot \mathrm{d}\mathrm{P}' \tag{36}$$

$$\mathrm{d}\varphi = \frac{\mathrm{c}}{r\omega\sin\theta}k_{\varphi}\cdot\mathrm{d}\mathrm{P}'\tag{37}$$

进而可得射线轨迹的迭代表达式为

$$r = r + \mathrm{d}r \tag{38}$$

$$\theta = \theta + \mathrm{d}\theta \tag{39}$$

$$\varphi = \varphi + \mathrm{d}\varphi \tag{40}$$

进而可得,路径传播时延为

$$t = M \frac{\mathrm{d}\mathbf{P}'}{\mathrm{c}} \tag{41}$$

其中,*M*为电磁波由发射点到达目标位置时的迭代 次数。

发射点的初始条件由式(24)和式(25)确定,波 矢量的初始条件由式(21)、式(22)和式(23)确定。 这样,式(21)—式(40)构成了完毕的数值迭代算法, 可以清晰描述电磁波的射线轨迹。另外,从式(35)— 式(41)可以看出,射线轨迹的变化取决于波矢量的 变化,而波矢量又受折射指数的影响,因此电离层 折射指数决定射线轨迹,即不同的折射指数对应不 同的射线轨迹,不同的射线轨迹具有不同的路径时 延,揭示了同一传播模式中也会产生多径时延。

5 仿真及试验

5.1 算法验证

由文献[7]可知,位于北美大陆阿拉斯加州费尔 班克斯长度为80 km天波链路的实际测量数据得到 的散射函数如图1所示。其中,横坐标为多普勒频 移,纵坐标为传输时延。可以看出,同一传播模式 引起的多径时延分别为60 µs和200 µs,不同传播模 式之间的多径时延为500 µs。由文献[21]可知,青 岛-许昌链路多径时延的实测结果如表1所示,同一 传播模式引起的多径时延变化范围为8~55 µs。这 两条链路的实测结果说明同一传模式中寻常波和非 寻常波之间的时延差通常小于0.5 ms。

利用第4节设计的算法对上述两条链路的路径 时延和多径时延进行仿真,北美大陆长度为80 km 天波链路的仿真结果如表2所示,多径时延变化范 围为48~316 µs; 青岛-许昌链路仿真结果如表3所 示,多径时延变化范围为68~316 µs。可以看出,

图 1 北美大陆天波链路(8 km)实测数据得到的散射函数

表 1 青岛-许昌链路多径时延实测结果

序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14
多径时延(μs)	55	11	30	8	22	8	19	31	31	53	22	30	10	40

同一传播模式引起的多径时延的仿真结果和实测结 果基本一致,说明本文的分析方法是合理的。

5.2 数值仿真

选取青岛(N36°, E120°)、北京(N39°, E116°)、上海(N31.2°, E121.5°)和重庆(N29.3°, E106.3°)4个城市,形成青岛-北京、青岛-上海和青岛-重庆3条链路,长度分别为485 km,551 km和 1481 km,设定时间为5月11日5点、13点和21点 3个时段,太阳黑子数为30,选用的电离层模型为 国际参考电离层模型。

表 2 北美大陆天波链路(80 km)路径时延和多径时延仿真结果

频率(MHz)	3.5	3.8	4.1	4.4	4.7	5.0
寻常波时延(ms)	1.228	1.312	1.875	1.916	2.000	2.144
非寻常波时延(ms)	1.544	1.540	1.624	1.868	2.180	2.308
多径时延(μs)	316	228	251	48	180	164

表 3 青岛-许昌链路路径时延和多径时延仿真结果

	_		_	_	_	_
频率(MHz)	6.5	7.0	7.5	8.0	8.5	9.0
寻常波时延(ms)	2.760	2.912	2.928	2.996	3.168	3.480
非寻常波时延(ms)	2.516	3.052	3.000	2.928	2.960	3.164
多径时延(μs)	244	140	72	68	208	316

利用第4节的算法进行了数值仿真,表4、表5 和表6分别为青岛-北京链路在5点、13点和21点3个 时段的路径传输时延和多径时延,表7、表8和表9 分别为青岛-上海链路在5点、13点和21点3个时段 的路径传输时延和多径时延,表10—表14分别为青岛-重庆链路在5点、13点和21点3个时段的路径传输时 延和多径时延。其中,频率为入射波频率,传输时 延为1跳模式下寻常波和非寻常波的路径传输时延, 多径时延为寻常波和非寻常波的传输时延之差。

表13为根据表4~表6得到的青岛-北京链路多 径时延的期望和标准差,表14为根据表7—表9得到 的青岛-上海链路多径时延的期望和标准差,表15 为根据表10—表12得到的青岛-重庆链路多径时延的 期望和标准差。从表12—表13可以看出,多径时延 的期望越大,标准差也越大,多径时延的取值范围 通常为25~200 μs。

表 4 青岛-北京链路5点时段路径时延和多径时延

频率(MHz)	4.0	4.5	5.0	5.5	6.0
寻常波时延(ms)	2.292	2.280	2.372	2.560	2.764
非寻常波时延(ms)	2.264	2.304	2.352	2.408	2.488
多径时延(μs)	28	24	20	152	276

表 5 青岛-北京链路13点时段路径时延和多径时延

频率(MHz)	6.0	6.5	7.0	7.5	8.0	8.5	9.0
寻常波时延(ms)	2.572	2.464	2.408	2.484	2.520	2.628	2.944
非寻常波时延(ms)	2.776	2.512	2.452	2.440	2.336	2.484	2.644
多径时延(μs)	204	48	44	40	184	144	300

表 6 青岛-北京链路21点时段路径时延和多径时延

频率(MHz)	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
寻常波时延(ms)	2.308	2.304	2.356	2.408	2.448	2.764	2.688	2.900
非寻常波时延(ms)	2.276	2.308	2.340	2.320	2.396	2.472	2.552	2.720
多径时延(μs)	32	4	16	88	52	292	136	18

表 7 青岛-上海链路5点时段路径时延和多径时延

频率(MHz)	4.0	4.5	5.0	5.5	6.0
寻常波时延(ms)	2.440	2.496	2.704	2.624	2.940
非寻常波时延(ms)	2.408	2.412	2.412	2.460	2.504
多径时延(μs)	32	84	292	164	436

表 8 青岛-上海链路13点时段路径时延和多径时延

频率(MHz)	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5
寻常波时延(ms)	2.388	2.600	2.536	2.516	2.548	2.580	2.676	2.812	2.716	2.792
非寻常波时延(ms)	2.463	2.532	2.420	2.464	2.452	2.540	2.528	2.504	2.608	2.768
多径时延(μs)	85	68	116	52	96	40	148	308	108	24

频率(MHz)	5.0	5.	õ	6.0	6.5	7.0		7.5	8.0
寻常波时延(ms)	2.536	2.50	68 2	2.616	2.684	2.572		2.912	3.160
非寻常波时延(ms)	2.472	2.49	92 2	2.528	2.572	2.608		2.572	2.788
多径时延(μs)	64	76)	88	112	36		340	372
		表 10 青	昏岛-重庆链路	5点时段路径	时延和多径	时延			
频率(MHz)	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
寻常波时延(ms)	5.304	5.296	5.292	5.308	5.324	5.320	5.292	5.372	5.472
非寻常波时延(ms)	5.296	5.224	5.276	5.288	5.292	5.304	5.240	5.364	5.320
多径时延(μs)	8	72	16	20	32	16	52	8	152
		表 11 青	岛-重庆链路1	13点时段路径	时延和多谷	经时延			
频率(MHz)	11.5	12.	0	12.5	13.0	13.5		14.0	14.5
寻常波时延(ms)	5.328	5.22	28 ;	5.316	5.404	5.372		5.360	5.272
非寻常波时延(ms)	5.496	5.19	96 - 8	5.144	5.256	5.388		5.364	5.340
多径时延(μs)	168	32	2	172	148	16		4	68
频率(MHz)	15.0	15.	5	16.0	16.5	17.0		17.5	18.0
寻常波时延(ms)	5.332	5.32	28 5	5.332	5.332	5.368		5.380	5.420
非寻常波时延(ms)	5.352	5.28	80 8	5.324	5.348	5.360		5.356	5.348
多径时延(μs)	20	48	3	8	16	8		24	72
		表 12 青	岛-重庆链路2	21点时段路径	时延和多谷	时延			
频率(MHz)	7.0	7.5	8.0	8.5	9	.0	9.5	10.0	10.5
寻常波时延(ms)	5.226	5.235	5.241	5.304	5.2	259 5	.259	5.280	5.292
非寻常波时延(ms)	5.243	5.238	5.253	5.253	5.2	244 5	.274	5.284	5.295
多径时延(μs)	17	3	12	51	1	.5	15	4	3
频率(MHz)	11.0	11.5	12.0	12.5	13	3.0	13.5	14.0	14.5
寻常波时延(ms)	5.248	5.308	5.260	5.284	5.5	340 5	.356	5.428	5.388
非寻常波时延(ms)	5.256	5.292	5.300	5.308	5.5	304 5	.312	5.352	5.340
多径时延(μs)	8	16	40	24		6	44	76	48
表 13 青岛-北	京链路多径时延	的期望和标准	差	5.3	讨论与分	↑析			
时段(点)	5	13	21	•	对于同-	一传播模式	,由电	离层色散音	引起的多
期望(μs)	100.0	137.7	79.8	时延	为25~5	200 μs, Ξ	理想滤	波器的带	宽应为5
标准差(µs)	101.0	99.4	90.1	40 k	Hz,考虑	記到实际エ	程中成	之型滤波器的	 肉滚降系
				通常	为0.2,	可得信道带	带宽为6	~48 kHz,	即短波
表 14 青岛-上	海链路多径时延	的期望和标准	E差	· 带通	l信的模拟	l 带宽应为	48 kHz	Ζ.	
时段(点)	5	13	21	6	结束语				
期望(μs) 标准美()	201.6	104.5	155.4		本文在考	ś虑地磁场	影响的	」情况下,*	
协 准左(μs)	146.4	76.6	128.9	• 播的	折射指数	如射线追	踪结合	起来,给出	出了数值
表 15 青岛-重	庆链路多径时延	的期望和标准	差	代算	法,实现 经时延	见了用数值 并选取吉	方法来	、描述电离剧 5	层色散引 海
时段(点)	5	13	21	· 山夕 香庄	口可 <i>匹</i> , 3条曲刑	」 20 40 F		♪ 〒凹-⊥ 仿百和空 ^協	いみ、 月 〒加昌粉
期望(μs)	41.8	57.4	25.8	. 至八 哈证		经时延过	」 双 但	5国为95~"	いい里刻 00 ue
、 标准差(us)	43.0	58 7	20.5	의찌 네티	., 可叫3		小人旧礼	コロノリムワープ	$200 \ \mu s$

究方法对于短波宽带通信的波形设计具有重要的参考价值。另外,本文只分析了一跳的情况,后续可以对多跳、高仰角和低仰角等传播模式与短波信道的关系进行深入研究。

参考文献

- WANG Jinlong, LI Shaoqian, and WEI Jibo. Wideband, intelligent and integrated HF communications[J]. *China Communications*, 2018, 15(9): iii-v. doi: 10.1109/ CC.2018.8456446..
- [2] LOBOVA E O and KANDAUROV N A. Experimental results of dispersion distortion compensation of wideband signals with a device based on a digital filter bank[C]. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706758.
- [3] LOBOV E M and SHUBIN D N. A narrow-band interference compensation device based on a digital filter bank for broadband low-energy HF radio lines[C]. 2019 Systems of signals generating and processing in the field of on board communication, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706791.
- [4] VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part I: Deterministic model[R]. NTIA Report 88–240, 1988.
- [5] VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part II: Stochastic model[R]. NTIA Report 90–255, 1990.
- [6] VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part III: Transfer function[R]. NTIA Report 93–284, 1992.
- [7] VOGLER L E and HOFFMEYER J A. A model for wideband HF propagation channels[J]. *Radio Science*, 1993, 28(6): 1131–1142. doi: 10.1029/93RS01607.
- [8] MIL-STD-188-110D Interoperability and performance standards for data modems[S]. 2017: 142–145.
- [9] NELSON R, JORGENSON M, and JOHNON R W. Extension of wideband HF capabilities[EB/OL]. https://www.hfindustry.com/account/my-account. 2014.5.
- [10] DAVIS K. Ionospheric Radio[M]. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1990: 18–20.
- [11] 索玉成. 电离层短波射线追踪[J]. 空间科学学报, 1993, 13(4): 306-312.

SUO Yucheng. Short wave ray tracing in the ionosphere[J]. Chinese Journal of Space Science, 1993, 13(4): 306–312.

[12] 柳文,焦培南,王世凯,等.电离层短波三维射线追踪及其应用研究[J].电波科学学报,2008,23(1):41-48,67.doi: 10.3969/j.issn.1005-0388.2008.01.007.

LIU Wen, JIAO Peinan, WANG Shikai, et al. Short wave ray tracing in the ionosphere and its application[J]. Chinese Journal of Radio Science, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007.

- [13] THAYAPARAN T, DUPONT D, IBRAHIM Y, et al. Highfrequency ionospheric monitoring system for over-thehorizon radar in Canada[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6372-6384. doi: 10.1109/TGRS.2019.2905757.
- [14] THAYAPARAN T, IBRAHIM Y, POLAK J, et al. Highfrequency over-the-horizon radar in Canada[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1700–1704. doi: 10.1109/LGRS.2018.2856185.
- [15] KLIMENKO M V, CHIRIK N V, KOTOVA D S, et al. Development of improved ionospheric empirical model and software for HF ray tracing[C]. 2018 2nd URSI Atlantic Radio Science Meeting, Meloneras, Spain, 2018. doi: 10.23919/URSI-AT-RASC.2018.8471348.
- [16] JONES R M and STEPHENSON J J. A versatile threedimensional ray tracing computer program for radio waves in the ionosphere[R]. OT Report 75–76, 1975.
- [17] 攸阳,钱志刚,李吉宁,等.短波时差定位中电离层参数对定位
 影响仿真[J].电波科学学报,2017,32(4):462-466.doi:
 10.13443/J.CJORS.2017033002.

YOU Yang, QIAN Zhigang, LI Jining, *et al.* Simulation on the effect of ionospheric parameters on TDOA location in short wave[J]. *Chinese Journal of Radio Science*, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002.

- [18] HUANG Xiaoguo. Extended beam approximation for highfrequency wave propagation[J]. *IEEE Access*, 2018, 6: 37214–37224. doi: 10.1109/ACCESS.2018.2849595.
- [19] SAITO S, YAMAMOTO M, and MARUYAMA T. Arrival angle and travel time measurements of HF transequatorial propagation for plasma bubble monitoring[J]. *Radio Science*, 2018, 53(11): 1304–1315. doi: 10.1029/2017 RS006518.
- [20] TAYGUR M M, EIBERT T F, and SUKHAREVSKY I O.

A bidirectional ray-tracing method for antenna coupling evaluation based on the reciprocity theorem[J]. *IEEE Transactions on Antennas and Propagation*, 2018, 66(12): 6654–6664. doi: 10.1109/TAP.2018.2876680.

- [21] YAN Zhaowen, ZHANG Lanlan, RAHMAN T, et al. Prediction of the HF ionospheric channel stability based on the modified ITS model[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3321–3333. doi: 10.1109/ TAP.2013.2249571.
- 吴永宏: 男,1974年生,高级工程师,主要研究方向为短波通信、 网络规划和信号处理等.
- 王程林: 男,1985年生,工程师,主要研究方向为短波通信及嵌入 式软件开发.
- 任渊博: 女,1980年生,工程师,主要研究方向为短波通信及嵌入 式软件开发.
- 周福厚: 男,1972年生,工程师,主要研究方向为无线通信及信息 系统总体设计.

责任编辑: 马秀强