高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电离层色散的短波信道多径特性分析

吴永宏 王程林 任渊博 周福厚

吴永宏, 王程林, 任渊博, 周福厚. 基于电离层色散的短波信道多径特性分析[J]. 电子与信息学报, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384
引用本文: 吴永宏, 王程林, 任渊博, 周福厚. 基于电离层色散的短波信道多径特性分析[J]. 电子与信息学报, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384
Yonghong WU, Chenglin WANG, Yuanbo REN, Fuhou ZHOU. High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384
Citation: Yonghong WU, Chenglin WANG, Yuanbo REN, Fuhou ZHOU. High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384

基于电离层色散的短波信道多径特性分析

doi: 10.11999/JEIT190384
基金项目: 山东省支持青岛海洋科学与技术试点国家实验室重大科技专项(2018SDKJ0210)
详细信息
    作者简介:

    吴永宏:男,1974年生,高级工程师,主要研究方向为短波通信、网络规划和信号处理等

    王程林:男,1985年生,工程师,主要研究方向为短波通信及嵌入式软件开发

    任渊博:女,1980年生,工程师,主要研究方向为短波通信及嵌入式软件开发

    周福厚:男,1972年生,工程师,主要研究方向为无线通信及信息系统总体设计

    通讯作者:

    吴永宏 wyh7426@sina.com

  • 中图分类号: TN92

High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion

Funds: The Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0210)
  • 摘要:

    短波链路不同传播模式的多径时延通常为0.5~2.0 ms,该文研究同一传播模式的多径时延,在考虑地磁场影响的情况下,将电离层短波传播的折射指数和射线追踪结合起来,给出了数值迭代算法,实现了用数值方法来描述电离层色散引起的多径时延,并进行了数值仿真,得出短波宽带通信的模拟带宽应为48 kHz。

  • 图  1  北美大陆天波链路(8 km)实测数据得到的散射函数

    表  1  青岛-许昌链路多径时延实测结果

    序号1234567891011121314
    多径时延(µs)55113082281931315322301040
    下载: 导出CSV

    表  2  北美大陆天波链路(80 km)路径时延和多径时延仿真结果

    频率(MHz)3.53.84.14.44.75.0
    寻常波时延(ms)1.2281.3121.8751.9162.0002.144
    非寻常波时延(ms)1.5441.5401.6241.8682.1802.308
    多径时延(µs)31622825148180164
    下载: 导出CSV

    表  3  青岛-许昌链路路径时延和多径时延仿真结果

    频率(MHz)6.57.07.58.08.59.0
    寻常波时延(ms)2.7602.9122.9282.9963.1683.480
    非寻常波时延(ms)2.5163.0523.0002.9282.9603.164
    多径时延(µs)2441407268208316
    下载: 导出CSV

    表  4  青岛-北京链路5点时段路径时延和多径时延

    频率(MHz)4.04.55.05.56.0
    寻常波时延(ms)2.2922.2802.3722.5602.764
    非寻常波时延(ms)2.2642.3042.3522.4082.488
    多径时延(µs)282420152276
    下载: 导出CSV

    表  5  青岛-北京链路13点时段路径时延和多径时延

    频率(MHz)6.06.57.07.58.08.59.0
    寻常波时延(ms)2.5722.4642.4082.4842.5202.6282.944
    非寻常波时延(ms)2.7762.5122.4522.4402.3362.4842.644
    多径时延(µs)204484440184144300
    下载: 导出CSV

    表  6  青岛-北京链路21点时段路径时延和多径时延

    频率(MHz)4.55.05.56.06.57.07.58.0
    寻常波时延(ms)2.3082.3042.3562.4082.4482.7642.6882.900
    非寻常波时延(ms)2.2762.3082.3402.3202.3962.4722.5522.720
    多径时延(µs)32416885229213618
    下载: 导出CSV

    表  7  青岛-上海链路5点时段路径时延和多径时延

    频率(MHz)4.04.55.05.56.0
    寻常波时延(ms)2.4402.4962.7042.6242.940
    非寻常波时延(ms)2.4082.4122.4122.4602.504
    多径时延(µs)3284292164436
    下载: 导出CSV

    表  8  青岛-上海链路13点时段路径时延和多径时延

    频率(MHz)6.06.57.07.58.08.59.09.510.010.5
    寻常波时延(ms)2.3882.6002.5362.5162.5482.5802.6762.8122.7162.792
    非寻常波时延(ms)2.4632.5322.4202.4642.4522.5402.5282.5042.6082.768
    多径时延(µs)856811652964014830810824
    下载: 导出CSV

    表  9  青岛-上海链路21点时段路径时延和多径时延

    频率(MHz)5.05.56.06.57.07.58.0
    寻常波时延(ms)2.5362.5682.6162.6842.5722.9123.160
    非寻常波时延(ms)2.4722.4922.5282.5722.6082.5722.788
    多径时延(µs)64768811236340372
    下载: 导出CSV

    表  10  青岛-重庆链路5点时段路径时延和多径时延

    频率(MHz)6.06.57.07.58.08.59.09.510.0
    寻常波时延(ms)5.3045.2965.2925.3085.3245.3205.2925.3725.472
    非寻常波时延(ms)5.2965.2245.2765.2885.2925.3045.2405.3645.320
    多径时延(µs)87216203216528152
    下载: 导出CSV

    表  11  青岛-重庆链路13点时段路径时延和多径时延

    频率(MHz)11.512.012.513.013.514.014.5
    寻常波时延(ms)5.3285.2285.3165.4045.3725.3605.272
    非寻常波时延(ms)5.4965.1965.1445.2565.3885.3645.340
    多径时延(µs)1683217214816468
    频率(MHz)15.015.516.016.517.017.518.0
    寻常波时延(ms)5.3325.3285.3325.3325.3685.3805.420
    非寻常波时延(ms)5.3525.2805.3245.3485.3605.3565.348
    多径时延(µs)204881682472
    下载: 导出CSV

    表  12  青岛-重庆链路21点时段路径时延和多径时延

    频率(MHz)7.07.58.08.59.09.510.010.5
    寻常波时延(ms)5.2265.2355.2415.3045.2595.2595.2805.292
    非寻常波时延(ms)5.2435.2385.2535.2535.2445.2745.2845.295
    多径时延(µs)1731251151543
    频率(MHz)11.011.512.012.513.013.514.014.5
    寻常波时延(ms)5.2485.3085.2605.2845.3405.3565.4285.388
    非寻常波时延(ms)5.2565.2925.3005.3085.3045.3125.3525.340
    多径时延(µs)816402436447648
    下载: 导出CSV

    表  13  青岛-北京链路多径时延的期望和标准差

    时段(点)51321
    期望(µs)100.0137.779.8
    标准差(µs)101.099.490.1
    下载: 导出CSV

    表  14  青岛-上海链路多径时延的期望和标准差

    时段(点)51321
    期望(µs)201.6104.5155.4
    标准差(µs)146.476.6128.9
    下载: 导出CSV

    表  15  青岛-重庆链路多径时延的期望和标准差

    时段(点)51321
    期望(µs)41.857.425.8
    标准差(µs)43.958.720.5
    下载: 导出CSV
  • WANG Jinlong, LI Shaoqian, and WEI Jibo. Wideband, intelligent and integrated HF communications[J]. China Communications, 2018, 15(9): iii–v. doi: 10.1109/CC.2018.8456446.
    LOBOVA E O and KANDAUROV N A. Experimental results of dispersion distortion compensation of wideband signals with a device based on a digital filter bank[C]. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706758.
    LOBOV E M and SHUBIN D N. A narrow-band interference compensation device based on a digital filter bank for broadband low-energy HF radio lines[C]. 2019 Systems of signals generating and processing in the field of on board communication, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706791.
    VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part I: Deterministic model[R]. NTIA Report 88–240, 1988.
    VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅱ: Stochastic model[R]. NTIA Report 90–255, 1990.
    VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅲ: Transfer function[R]. NTIA Report 93–284, 1992.
    VOGLER L E and HOFFMEYER J A. A model for wideband HF propagation channels[J]. Radio Science, 1993, 28(6): 1131–1142. doi: 10.1029/93RS01607
    MIL-STD-188-110D Interoperability and performance standards for data modems[S]. 2017: 142–145.
    NELSON R, JORGENSON M, and JOHNON R W. Extension of wideband HF capabilities[EB/OL]. https://www.hfindustry.com/account/my-account. 2014.5.
    DAVIS K. Ionospheric Radio[M]. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1990: 18–20.
    索玉成. 电离层短波射线追踪[J]. 空间科学学报, 1993, 13(4): 306–312.

    SUO Yucheng. Short wave ray tracing in the ionosphere[J]. Chinese Journal of Space Science, 1993, 13(4): 306–312.
    柳文, 焦培南, 王世凯, 等. 电离层短波三维射线追踪及其应用研究[J]. 电波科学学报, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007

    LIU Wen, JIAO Peinan, WANG Shikai, et al. Short wave ray tracing in the ionosphere and its application[J]. Chinese Journal of Radio Science, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007
    THAYAPARAN T, DUPONT D, IBRAHIM Y, et al. High-frequency ionospheric monitoring system for over-the-horizon radar in Canada[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6372–6384. doi: 10.1109/TGRS.2019.2905757
    THAYAPARAN T, IBRAHIM Y, POLAK J, et al. High-frequency over-the-horizon radar in Canada[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1700–1704. doi: 10.1109/LGRS.2018.2856185
    KLIMENKO M V, CHIRIK N V, KOTOVA D S, et al. Development of improved ionospheric empirical model and software for HF ray tracing[C]. 2018 2nd URSI Atlantic Radio Science Meeting, Meloneras, Spain, 2018. doi: 10.23919/URSI-AT-RASC.2018.8471348.
    JONES R M and STEPHENSON J J. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere[R]. OT Report 75–76, 1975.
    攸阳, 钱志刚, 李吉宁, 等. 短波时差定位中电离层参数对定位影响仿真[J]. 电波科学学报, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002

    YOU Yang, QIAN Zhigang, LI Jining, et al. Simulation on the effect of ionospheric parameters on TDOA location in short wave[J]. Chinese Journal of Radio Science, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002
    HUANG Xiaoguo. Extended beam approximation for high-frequency wave propagation[J]. IEEE Access, 2018, 6: 37214–37224. doi: 10.1109/ACCESS.2018.2849595
    SAITO S, YAMAMOTO M, and MARUYAMA T. Arrival angle and travel time measurements of HF transequatorial propagation for plasma bubble monitoring[J]. Radio Science, 2018, 53(11): 1304–1315. doi: 10.1029/2017RS006518
    TAYGUR M M, EIBERT T F, and SUKHAREVSKY I O. A bidirectional ray-tracing method for antenna coupling evaluation based on the reciprocity theorem[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6654–6664. doi: 10.1109/TAP.2018.2876680
    YAN Zhaowen, ZHANG Lanlan, RAHMAN T, et al. Prediction of the HF ionospheric channel stability based on the modified ITS model[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3321–3333. doi: 10.1109/TAP.2013.2249571
  • 加载中
图(1) / 表(15)
计量
  • 文章访问数:  2332
  • HTML全文浏览量:  1117
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2020-03-02
  • 网络出版日期:  2020-03-31
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回