高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

概率译码转发中继系统中的安全极化编码方法

白慧卿 金梁 黄开枝 易鸣

白慧卿, 金梁, 黄开枝, 易鸣. 概率译码转发中继系统中的安全极化编码方法[J]. 电子与信息学报, 2018, 40(9): 2112-2118. doi: 10.11999/JEIT171142
引用本文: 白慧卿, 金梁, 黄开枝, 易鸣. 概率译码转发中继系统中的安全极化编码方法[J]. 电子与信息学报, 2018, 40(9): 2112-2118. doi: 10.11999/JEIT171142
Huiqing BAI, Liang JIN, Kaizhi HUANG, Ming YI. Secrecy Polar Coding in Systems with Probabilistic DF Relay[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2112-2118. doi: 10.11999/JEIT171142
Citation: Huiqing BAI, Liang JIN, Kaizhi HUANG, Ming YI. Secrecy Polar Coding in Systems with Probabilistic DF Relay[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2112-2118. doi: 10.11999/JEIT171142

概率译码转发中继系统中的安全极化编码方法

doi: 10.11999/JEIT171142
基金项目: 国家自然科学基金创新群体项目(61521003),国家863计划(2015AA01A708),国家青年科学基金(61501516)
详细信息
    作者简介:

    白慧卿:女,1988 年生,博士生,研究方向为无线物理层安全技术

    金梁:男,1969 年生,教授,博士生导师,研究方向为移动通信、无线物理层安全技术

    黄开枝:女,1973 年生,教授,博士生导师,研究方向为移动通信、无线物理层安全技术

    易鸣:男,1986 年生,讲师,研究方向为无线物理层安全编码

    通讯作者:

    金梁   liangjin@263.net

  • 中图分类号: TN918

Secrecy Polar Coding in Systems with Probabilistic DF Relay

Funds: The Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61521003), The National 863 Program of China (2015AA01A708), The National Natural Science Foundation for Young Scientists of China (61501516)
  • 摘要: 该文针对中继节点依概率辅助译码转发的通信场景,提出一种中继辅助的安全极化编码方法,保证私密信息可靠传输的同时,达到提高安全传输速率的目的。首先,发送端分别进行两层极化编码——中继概率转发行为构成的虚拟二进制删除信道下的极化编码和实际传输信道下的极化编码,并将私密信息分别隐藏在两层码字中,分时隙广播出去。然后,中继依概率译码后提取出合法用户无法直接接收的固定信息再次进行安全极化编码并转发。最后,接收端利用收到的中继转发码字和发端码字依次分层进行译码。理论和仿真分析证明,所提方法下合法用户能够可靠接收私密信息,而窃听者无法获取任何私密信息信息量;安全传输速率随着码长和中继转发概率的增加而增大,且高于一般的安全极化编码方法。
  • 图  1  概率转发中继-窃听信道模型

    图  2  发送端—多层安全极化编码示意图

    图  3  中继—译码转发示意图

    图  4  接收端—译码示意图

    图  5  不同中继译码转发概率下的安全传输速率( $N = 1024$ )

    图  6  不同中继译码转发概率下的安全传输速率(T=128)

    图  7  不同中继译码转发概率下的私密信息误比特率

  • ZOU Yulong, ZHU Jia, WANG Xinbin, et al. A survey on wireless security: Technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727–1765 doi: 10.1109/JPROC.2016.2558521
    XIAO Shuaifang, GUO Yunfei, HUANG Kaizhi, et al. High-rate secret key generation aided by multiple relays for Internet of things[J]. Electronics Letters, 2017, 53(17): 1198–1200 doi: 10.1049/el.2017.2346
    ZHANG Yingxian, YANG Zhen, LIU Aijun, et al. Secure transmission over the wiretap channel using polar codes and artificial noise[J]. IET Communications, 2017, 11(3): 377–384 doi: 10.1049/iet-com.2016.0429
    白慧卿, 金梁, 肖帅芳, 等. 多天线系统中面向物理层安全的极化编码方法[J]. 电子与信息学报, 2017, 39(11): 2587–25931 doi: 10.11999/JEIT170068

    BAI Huiqing, JIN Liang, XIAO Shuaifang, et al. Polar codes for physical layer security in multi-antenna systems[J]. Journal of Electronics&Information Technology, 2017, 39(11): 2587–25931 doi: 10.11999/JEIT170068
    OZAROW L H and WYNER A D. Wire-tap channel II[J]. AT&T Bell System Technical Journal, 1984, 63(10): 2135–2137.
    CASSITO Y and BANDIC Z. Low complexity wiretap codes with security and error-correction guarantees [C]. IEEE Information Theory Workshop, Dublin, Ireland, 2010: 1–5.
    BELFIORE J C and OGGIER F. Lattice codes design for the Rayleigh fading wire-tap channel [C]. IEEE International Conference on Communications Workshops, Kyoto, Japan, 2011: 1–5.
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetry binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073 doi: 10.1109/TIT.2009.2021379
    MAHDAVIFAR H and VARDY A. Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6428–6443 doi: 10.1109/TIT.2011.2162275
    SASOGLU E and VARDY A. A new polar coding scheme for strong security on wiretap channels[C]. IEEE Internationnal Symposium on Information Theory Proceedings (ISIT), Istanbul, Turkey, 2013: 1117–1121.
    MIRGHASEMI H and BELFIORE J. The un-polarized bit-channels in the wiretap polar coding scheme [C]. International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems, Manchester, Denmark, 2014: 1-5.
    SERRANO R B, THOBABEN R, ANDERSSON M, et al. Polar codes for cooperative relaying[J]. IEEE Transactions on Communications, 2012, 60(11): 3263–3273 doi: 10.1109/TCOMM.2012.081412.110266
    DUO Bin, WANG Peng, LI Yonghui, et al. Secure transmission for relay-eavesdropper channels using polar coding [C]. IEEE International Conference on Communications, Sydney, Australia, 2014: 2197–2202.
    DUO Bin, ZHONG Xiaoling, and GUO Yong. Practical polar code construction for degraded multiple-relay networks[J]. China Communications, 2017, 14(4): 127–139 doi: 10.1109/CC.2017.7927571
    KARAS D S, PAPPI K N, and KARAGIANNIDIS G K. Smart decode-and-forward relaying with polar codes[J]. IEEE Wireless Communications Letters, 2014, 3(1): 62–65 doi: 10.1109/WCL2013.111213.130639
    SOLIMAN T, YANG F, EJAZ S, et al. Decode and forward polar coding scheme for receive diversity: A relay partially perfect retransmission for half-duplex wireless relay channels[J]. IET Communications, 2017, 11(2): 185–191 doi: 10.1049/iet-com.2016.0915
    SI Hongbo, KOYLUOGLU O O, and VISHWANATH S. Hierarchical polar coding for achieving secrecy over state-dependent wiretap channels without any instantaneous CSI[J]. IEEE Transactions on Communications, 2016, 64(9): 3609–3623 doi: 10.1109/TCOMM.2016.2592523
  • 加载中
图(7)
计量
  • 文章访问数:  1454
  • HTML全文浏览量:  440
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-04-26
  • 网络出版日期:  2018-07-12
  • 刊出日期:  2018-09-01

目录

    /

    返回文章
    返回