高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量影响力聚类系数的高效有向网络社团划分算法

邓小龙 翟佳羽 尹栾玉

邓小龙, 翟佳羽, 尹栾玉. 基于矢量影响力聚类系数的高效有向网络社团划分算法[J]. 电子与信息学报, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
引用本文: 邓小龙, 翟佳羽, 尹栾玉. 基于矢量影响力聚类系数的高效有向网络社团划分算法[J]. 电子与信息学报, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
DENG Xiaolong, ZHAI Jiayu, YIN Luanyu. Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
Citation: DENG Xiaolong, ZHAI Jiayu, YIN Luanyu. Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102

基于矢量影响力聚类系数的高效有向网络社团划分算法

doi: 10.11999/JEIT170102
基金项目: 

国家973 计划项目(2013CB 329600),教育部哲学社会科学重大攻关项目(15JZD027),十二五国家科技支撑计划国家文化科技创新工程2013 年备选项目(2013BAH43F01)

Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm

Funds: 

The National 973 Project of China (2013CB329600), The Philosophy and Social Science Project of Education Ministry (15JZD027), The National Culture Support Foundation Project of China (2013BAH43F01)

  • 摘要: 社团结构划分对于分析复杂网络的统计特性非常重要,以往研究往往侧重对无向网络的社团结构挖掘,对新兴的微信朋友圈网络、微博关注网络等涉及较少,并且缺乏高效的划分工具。为解决传统社团划分算法在大规模有向社交网络上无精确划分模拟模型,算法运行效率低,精度偏差大的问题。该文从构成社团结构最基础的三角形极大团展开数学推导,对网络节点的局部信息传递过程进行建模,并引入概率图有向矢量计算理论,对有向社交网络中具有较大信息传递增益的节点从数学基础创造性地构建了有向传递增益系数(Information Transfer Gain, ITG)。该文以此构建了新的有向社团结构划分效果的目标函数,提出了新型有向网络社团划分算法ITG,通过在模拟网络数据集和真实网络数据集上进行实验,验证了所提算法的精确性和新颖性,并优于FastGN, OSLOM和Infomap等经典算法。
  • XIE J, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: The state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): 2-35. doi: 10.1145/2501654.2501657.
    NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133. doi: 10.1103/PhysRevE.69.066113.
    CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111.
    BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): 1-12. doi: 10.1088/1742-5468/2008/10/P10008.
    PRAT-PREZ A, DOMINGUEZ-SAL D, and LARRIBA- PEY J L. High quality, scalable and parallel community detection for large real graphs[C]. The 23rd International Conference on World Wide Web, ACM, Seoul, Korea 2014: 225-236. doi: 10.1145/2566486.2568010.
    ZHU X, GHAHRAMANI Z, and LAFFERTY J. Semi- supervised learning using Gaussian fields and harmonic functions[C]. International Conference on Machine Learning, Washington D.C., US, 2003, 3: 912-919.
    RAGHAVAN U N, ALBERT R, and KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 036106. doi: 10.1103/PhysRevE.76.036106.
    PONS P and LATAPY M. Computing communities in large networks using random walks[C]. International Symposium on Computer and Information Sciences. Springer Berlin Heidelberg, Krakow, Poland, 2005: 284-293. doi: 10.1007/ 11569596_31.
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(4): 1118-1123. doi: 10.1073/pnas.0706851105.
    LANCICHINETTI A and FORTUNATO S. Community detection algorithms: A comparative analysis[J]. Physical Review E, 2009, 80(5): 056117. doi: 10.1103/PhysRevE.80. 056117.
    PALLA G, DERNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818. doi: 10.1038/nature03607.
    AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multi scale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi: 10.1038/nature09182.
    LANCICHINETTI A, RADICCHI F, RAMASCO J J, et al. Finding statistically significant communities in networks[J]. PloS One, 2011, 6(4): e18961. doi: 10.1371/journal.pone. 0018961.
    YANG J and LESKOVEC J. Overlapping community detection at scale: A nonnegative matrix factorization approach[C]. The Sixth ACM International Conference on Web Search and Data Mining. ACM, Rome, Italy, 2013: 587-596. doi: 10.1145/2433396.2433471.
    NEWMAN M E J and CLAUSET A. Structure and inference in annotated networks[J]. Nature Communications, 2016,7: 11863. doi: 10.1038/ncomms11863.
    KOLLER D and FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques[M]. Massachusetts USA, MIT Press, 2009: 1-5.
    PRAT-PREZ A, DOMINGUEZ-SAL D, BRUNAT J M, et al. Shaping communities out of triangles[C]. The 21st ACM International Conference on Information and Knowledge Management, ACM, 2012: 1677-1681. doi: 10.1145/2396761. 2398496.
    LEVORATO V and PETERMANN C. Detection of communities in directed networks based on strongly p-connected components[C]. IEEE 2011 International Conference on Computational Aspects of Social Networks (CASoN), Salamanca, Spain, 2011: 211-216. doi: 10.1109/ CASON.2011.6085946.
    ARENAS A, DUCH J, FERNNDEZ A, et al. Size reduction of complex networks preserving modularity[J]. New Journal of Physics, 2007, 9(6): 1-14. doi: 10.1088/1367-2630/9/6/176.
  • 加载中
计量
  • 文章访问数:  1080
  • HTML全文浏览量:  127
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-25
  • 修回日期:  2017-08-16
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回