高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于系统一阶摄动解主频功率比的弱信号检测方法

孙文军 芮国胜 张洋 陈强

孙文军, 芮国胜, 张洋, 陈强. 基于系统一阶摄动解主频功率比的弱信号检测方法[J]. 电子与信息学报, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510
引用本文: 孙文军, 芮国胜, 张洋, 陈强. 基于系统一阶摄动解主频功率比的弱信号检测方法[J]. 电子与信息学报, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510
SUN Wenjun, RUI Guosheng, ZHANG Yang, CHEN Qiang. Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution[J]. Journal of Electronics & Information Technology, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510
Citation: SUN Wenjun, RUI Guosheng, ZHANG Yang, CHEN Qiang. Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution[J]. Journal of Electronics & Information Technology, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510

基于系统一阶摄动解主频功率比的弱信号检测方法

doi: 10.11999/JEIT150510
基金项目: 

国家自然科学基金(41476089)

Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution

Funds: 

The National Natural Science Foundation of China (41476089)

  • 摘要: 针对现有混沌检测算法精度不高、状态响应滞后的问题,该文从混沌状态整体性、系统解频域特性等角度进行全面分析,提出一种基于摄动解主频功率比的弱信号检测方法,该算法不仅准确实现了临界状态的有效界定,提高了信号检测的可靠程度,而且揭示了系统各个状态之间的差别及物理含义。文中采用参数摄动法推导了Duffing-Van der pol振子的一阶摄动平衡解,证明了其为影响主频率分量的主要因素。在此基础上,采用经验模态分解方法对有效参量信息进行选择性重构,以最小均方误差约束准则下的比值系数重新定义了系统状态,得到系统主频功率比与策动力幅值之间的映射关系,并以此作为临界阈值确定的依据。实验结果表明,采用主频功率比准则的信号检测方法可靠性提高了约1个数量级,且算法的响应速度为传统分析方法的2倍以上。
  • 邓冬虎, 张群, 罗迎, 等. Duffing 振子在低信噪比雷达目标微动特征提取中的应用[J]. 电子与信息学报, 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624.
    DENG Donghu, ZHANG Qun, LUO Yin, et al.. The application of Duffing oscillators to micro-motion feature extraction of radar target under low SNR[J]. Journal of Electronics Information Technology, 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624.
    JAISER A R, STEN K, and KYSLE P. A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions[J]. Computers and Mathematics with Applications, 2012(64): 2049-2065.
    靳晓艳, 周希元. 一种基于特定Duffing振子的MPSK信号调制识别算法[J]. 电子与信息学报, 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146.2012.01728.
    JIN Xiaoyan and ZHOU Xiyuan. A modulation classification algorithm for MPSK signals based on special Duffing oscillator[J]. Journal of Electronics Information Technology, 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146. 2012.01728.
    MLOON F, TAYLE G, DILER B, et al. Pseudorandom number generator based on mixing of three chaotic maps[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 1-8.
    韩建群. 一种减小Duffing系统可检测断续正弦信号频率范围的方法[J]. 电子学报, 2013, 41(4): 733-738.
    HAN Jianqun. A method of narrowing frequency range of intermittent sine signal detected by Duffing system[J]. Acta Electronica Sinica, 2013, 41(4): 733-738.
    张淑清, 翟欣沛, 董璇, 等. EMD及Duffing振子在小电流系统故障选线方法中的应用[J]. 中国电机工程学报, 2013, 33(10): 161-167.
    ZHANG Shuqing, ZHAI Xinpei, DONG Xuan, et al. Application of EMD and Duffing oscillator to fault line detection in un-effectively grounded system[J]. Proceedings of the CSEE, 2013, 33(10): 161-167.
    MENG K L and STEVE S. Temporal and spectral responses of a softening Duffing oscillator undergoing route-to-chaos[J]. Communication Nonlinear Science Numerical Simulation, 2012(17): 5217-5228.
    冯俊, 徐伟, 顾仁财, 等. 有界噪声与谐和激励联合作用下Duffing-Rayleigh振子的Melnikov混沌[J]. 物理学报, 2011, 34(9): 170-177.
    FENG Jun, XU Wei, GU Rencai, et al. Melnikov chaos in Dufing-Rayleigh oscillator subjected to combined bounded noise and harmonic excitations[J]. Acta Physica Sinica, 2011, 34(9): 170-177.
    唐元璋, 楼京俊, 翁雪涛, 等. Duffing 振子倍周期分岔谱特性[J]. 振动与冲击, 2014(2): 60-63.
    TANG Yuanzhang, LOU Jingjun, WENG Xuetao, et al. Spectrum property of period-doubling bifurcations of Duffing oscillator[J]. Journal of Vibration and Shock, 2014(2): 60-63.
    JIMENEZ-TRIANA A, WALLACE K T, GUANRONG C, et al. Chaos control in Duffing system using impulsive parametric perturbations[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(4): 305-309.
    刘延彬, 陈予恕. 余维4的Duffing-Van der Pol方程全局分岔分析[J]. 振动与冲击, 2011(1): 69-72.
    LIU Yanbin and CHEN Yunu. The global analyses on Duffing-Van der Pol equation of redundant dimension 4[J]. Journal of Vibration and Shock, 2011(1): 69-72.
    姚天亮, 刘海峰, 许建良, 等. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计[J]. 物理学报, 2012, 61(6): 53-57.
    YAO Tianliang, LIU Haifeng, XU Jianliang, et al. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent[J]. Acta Physica Sinica, 2012, 61(6): 53-57.
    芮国胜, 张洋, 苗俊, 等. 联合增益递推的Duffing系统弱信号检测算法[J]. 电子学报, 2012, 40(6): 1269-1273.
    RUI Guosheng, ZHANG Yang, MIAO Jun, et al. A weak signal detection method by Duffing System with the gain[J]. Acta Electronica Sinica, 2012, 40(6): 1269-1273.
    杨红英, 叶昊, 王桂增, 等. Duffing 振子的 Lyapunov 指数与 Floquet 指数研究[J]. 仪器仪表学报, 2008, 29(5): 927-932.
    YANG Hongying, YE Hao, WANG Guizeng, et al. Study on Lyapunov exponent and Floquet exponent of Duffing oscillator[J]. Chinese Journal of Scientific Instrument, 2008, 29(5): 927-932.
    魏恒东, 甘露, 李立萍. 基于哈密顿量的Duffing振子微弱信号检测[J]. 电子科技大学学报, 2012, 41(2): 203-207.
    WEI Hengdong GAN Lu, and LI Liping. Weak signal detection by duffing oscillator based on hamiltonian[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 203-207.
    DIMITRIOS E P, EFSTATHIOS E T, and MICHALIS P M. Exact analytic solutions for the damped Duffing nonlinear oscillator[J]. Chaos, Solitons and Fractals, 2006(334): 311-316.
    IBRAHIM A M A and CHOUDHURY P K. On the Maxwell- Duffing approach to model photonic deflection sensor[J]. IEEE Photonics Journal, 2013, 5(4): 6800812.
    李月, 徐凯, 杨宝俊, 等. 混沌振子系统周期解几何特征量分析与微弱周期信号的定量检测[J]. 物理学报, 2008, 57(6): 3353-3358.
    LI Yue, XU Kai, YANG Baojun, et al. Analysis of the geometric characteristic quantity of the periodic solutions of the chaotic oscillator system and the quantitative detection of weak periodic signal[J]. Acta Physica Sinica, 2008, 57(6): 3353-3358.
    何斌, 杨灿军, 陈鹰. 混沌周期解提高测量灵敏度算法及抗干扰分析[J]. 电子学报, 2003, 31(1): 68-70.
    HE Bin, YANG Canjun, and CHEN Ying. Study on enhancing delicacy Sensors using chaotic system[J]. Acta Electronica Sinica, 2003, 31(1): 68-70.
    LI Keqiang, WANG Shangjiu, and ZHAO Yonggang. Multiple periodic solutions for asymptotically linear Duffing equations with resonance[J]. Journal of Mathematical Analysis and Applications, 2013, 397: 156-160.
    王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪[J]. 物理学报, 2013, 13(7): 1-12.
    WANG Wenbo and WANG Xiangli. Empirical mode decomposition pulsar signal denoising method based on predicting of noise mode cell[J]. Acta Physica Sinica, 2013, 13(7): 1-12.
    ALEX E. Analytical solution of the damped Helmholtz Duffing equation[J]. Applied Mathematics Letters, 2012(25): 2349-2353.
    YANHUA H, XIANFENG C, SPENCER P S, et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J]. IEEE Journal of Quantum Electronics, 2015, 51(3): 1-6.
    YAZDI M K, AHMADIAN H, MIRZABEIGY A, et al. Dynamic analysis of vibrating systems with nonlinearities[J]. Communications in Theoretical Physics, 2012(2): 183-187.
  • 加载中
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  124
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-08-28
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回