高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于加速FPGA设计空间探索的电路特性驱动半监督建模方法

杨立群 李威 黄志洪 孙嘉斌 杨海钢

杨立群, 李威, 黄志洪, 孙嘉斌, 杨海钢. 一种用于加速FPGA设计空间探索的电路特性驱动半监督建模方法[J]. 电子与信息学报, 2015, 37(10): 2521-2528. doi: 10.11999/JEIT150162
引用本文: 杨立群, 李威, 黄志洪, 孙嘉斌, 杨海钢. 一种用于加速FPGA设计空间探索的电路特性驱动半监督建模方法[J]. 电子与信息学报, 2015, 37(10): 2521-2528. doi: 10.11999/JEIT150162
Yang Li-qun, Li Wei, Huang Zhi-hong, Sun Jia-bin, Yang Hai-gang. Circuit Characteristics-driven Semi-supervised Modelling Approach for Accelerating FPGA Design Space Exploration[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2521-2528. doi: 10.11999/JEIT150162
Citation: Yang Li-qun, Li Wei, Huang Zhi-hong, Sun Jia-bin, Yang Hai-gang. Circuit Characteristics-driven Semi-supervised Modelling Approach for Accelerating FPGA Design Space Exploration[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2521-2528. doi: 10.11999/JEIT150162

一种用于加速FPGA设计空间探索的电路特性驱动半监督建模方法

doi: 10.11999/JEIT150162
基金项目: 

国家自然科学基金(61271149)

Circuit Characteristics-driven Semi-supervised Modelling Approach for Accelerating FPGA Design Space Exploration

Funds: 

The National Natural Science Foundation of China (61271149)

  • 摘要: 该文提出一种电路特性驱动的半监督建模方法来探索FPGA架构设计空间。通过加入电路特性作为输入来构建一个通用的FPGA性能模型,该方法能够精确预测指定电路在特定FPGA架构上实现的性能。实验结果显示该方法在预测电路在FPGA上实现的面积时,平均相对误差达到6.25%;预测延时时,平均相对误差可达4.23%,具有与半监督模型树(Semi-supervised Model Tree, SMT)方法可比的预测精度。同时,该文方法加速了FPGA性能建模过程,与SMT方法比较,在6核Intel服务器平台Intel Xeon E7-4807上,探索具有百万架构的FPGA设计空间时,该文方法可将时间成本由500 h降低为250 h。
  • Luu J, Goeders J, Wainberg M, et al.. VTR 7.0: next generation architecture and CAD system for FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2014, 7(2): 6:1-6:30.
    Marquardt A, Betz V, and Rose J. Speed and area tradeoffs in cluster-based FPGA architectures[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2000, 8(1): 84-93.
    Ahmed E and Rose J. The effect of LUT and cluster size on deep-submicron FPGA performance and density[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2004, 12(3): 288-298.
    Jiang Zheng-hong, Lin C Y, Yang Li-qun, et al.. Exploring architecture parameters for dual-output LUT based FPGAs[C]. Proceedings of the 24th International Conference on Field Programmable Logic and Applications, Munich, Germany, 2014: 1-6.
    Betz V, Rose J, and Marquardt A. Architecture and CAD for Deep-Submicron FPGAs [M]. Netherlands, Kluwer Academic Publishers, 1999: 15-20.
    Gao Hai-xia, Yang Yin-tang, Ma Xiao-hua, et al.. Analysis of the effect of LUT size on FPGA area and delay using theoretical derivations[C]. Proceedings of the 6th International Symposium on Quality of Electronic Design, San Jose, CA, USA, 2005: 370-374.
    Smith A, Wilton S, and Das J. Wirelength modeling for homogeneous and heterogeneous FPGA architectural development[C]. Proceedings of the 17th ACM/SIGDA international symposium on Field programmable gate arrays, Monterey, CA, USA, 2009: 181-190.
    Das J, Lam A, Wilton S, et al.. An analytical model relating FPGA architecture to logic density and depth[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(12): 2229-2242.
    Smith A, Constantinides G, and Cheung P. FPGA architecture optimization using geometric programming[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, 29(8): 1163-1176.
    Pandurangaiah Y, Reddy V, and Chakravarthy K. Area-delay estimation by concurrent optimization of FPGA architecture parameters using geometric programming[J]. International Journal of Computer Applications, 2013, 82(18): 4-11.
    Mehri H and Alizadeh B. An analytical dynamic and leakage power model for FPGAs[C]. Proceedings of the 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, 2014: 300-305.
    Leow Yoon-kah. Post-routing analytical models for homogeneous FPGA architectures[D]. [Ph. D. dissertation], The University of Arizona, 2013.
    Yang Li-qun, Yang Hai-gang, Li Wei, et al.. A semi-supervised modeling approach for performance characterization of FPGA architectures[C]. Proceedings of the 24th International Conference on Field Programmable Logic and Applications, Munich, Germany, 2014: 1-6.
    Wang Y and Witten I H. Inducing model trees for continuous classes[C]. Proceedings of the Ninth European Conference on Machine Learning, Prague, Czech Republic, 1997: 128-137.
    Brayton R and Mishchenko A. ABC: an academic industrial-strength verification tool[J]. Computer Aided Verification, 2010, 6174: 24-40.
    Zgheib G, Yang Li-qun, Huang Zhi-hong, et al.. Revisiting and-inverter cones[C]. Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 2014: 45-54.
  • 加载中
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  109
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-04-22
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回