高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流量异常检测中的直觉模糊推理方法

范晓诗 雷英杰 王亚男 郭新鹏

范晓诗, 雷英杰, 王亚男, 郭新鹏. 流量异常检测中的直觉模糊推理方法[J]. 电子与信息学报, 2015, 37(9): 2218-2224. doi: 10.11999/JEIT150023
引用本文: 范晓诗, 雷英杰, 王亚男, 郭新鹏. 流量异常检测中的直觉模糊推理方法[J]. 电子与信息学报, 2015, 37(9): 2218-2224. doi: 10.11999/JEIT150023
Fan Xiao-shi, Lei Ying-jie, Wang Ya-nan, Guo Xin-peng. Intuitionistic Fuzzy Reasoning Method in Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2218-2224. doi: 10.11999/JEIT150023
Citation: Fan Xiao-shi, Lei Ying-jie, Wang Ya-nan, Guo Xin-peng. Intuitionistic Fuzzy Reasoning Method in Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2218-2224. doi: 10.11999/JEIT150023

流量异常检测中的直觉模糊推理方法

doi: 10.11999/JEIT150023

Intuitionistic Fuzzy Reasoning Method in Traffic Anomaly Detection

  • 摘要: 针对网络流量特征属性不确定性和模糊性的特点,将直觉模糊推理理论引入异常检测领域,该文提出一种基于包含度的直觉模糊推理异常检测方法。首先设计异常检测中特征属性的隶属度与非隶属度函数,其次,给出基于包含度的强相似度计算方法并生成推理规则库,再次给出多维多重式直觉模糊推理规则,最后建立异常检测中的直觉模糊推理方法。通过对异常检测标准数据集KDD99的实验,验证该方法的有效性,与常见经典异常检测方法对比,该方法具有更良好的检测效果。
  • Dimitris K and Elpiniki I. Intuitionistic fuzzy reasoning with cognitive maps[C]. Proceedings of the IEEE International Conference on Fuzzy Systems, Taipei, China, 2011: 821-827.
    Chen Cheng-hung. Compensatory neural fuzzy networks with rule-based cooperative differential evolution for nonlinear system control[J]. Nonlinear Dynamics, 2014, 75(1): 355-366.
    Lei Yang, Lei Ying-jie, and Kong Wei-wei. Technique for target recognition based on intuitionistic fuzzy reasoning[J]. IET Signal Processing, 2012, 6(3): 255-263.
    Mitchell H B. Pattern recognition using type-II fuzzy sets[J]. Information Sciences, 2005, 170(2/4): 409-418.
    Hong Peng, Jun Wang, Mario J P J, et al.. Fuzzy reasoning spiking neural P system for fault diagnosis[J]. Information Sciences, 2013, 235: 106-116.
    Luigi L and Larbi B. Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization[J]. Knowledge Based System, 2007, 20(3): 266-276.
    雷英杰, 王宝树, 王毅. 基于直觉模糊推理的威胁评估方法[J].电子与信息学报, 2007, 29(9): 2077-2081.
    Lei Ying-jie, Wang Bao-shu, and Wang Yi. Techniques for threat assessment based on intuitionistic fuzzy reasoning[J]. Journal of Electronics Information Technology, 2007, 29(9): 2077-2081.
    雷英杰, 王宝树, 王毅. 基于直觉模糊决策的战场态势评估方法[J]. 电子学报, 2006, 34(12): 1275-1279.
    Lei Ying-jie, Wang Bao-shu, and Wang Yi. Techniques for battlefield situation assessment based on intuitionistic fuzzy decision[J]. Acta Electronica Sinica, 2006, 34(12): 1275-1279.
    Hwang C M, Yang M S, Hung W L, et al.. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition[J]. Infor-
    mation Sciences, 2012, 189: 93-109.
    Boran F E and Akay D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition[J]. Information Sciences, 2014, 255: 45-57.
    王毅, 刘三阳, 张文, 等. 基于包含度的直觉模糊相似度量推理方法[J]. 系统工程与电子技术, 2014, 36(3): 497-500.
    Wang Yi, Liu San-yang, Zhang Wen, et al.. Intuitionistic fuzzy similarity measures reasoning method based on inclusion degrees[J]. Systems Engineering and Electronics, 2014, 36(3): 497-500.
    严宣辉. 应用疫苗接种策略的免疫入侵检测模型[J]. 电子学报, 2009, 37(4): 780-785.
    Yan Xuan-hui. An artificial immune-based intrusion detection model using vaccination strategy[J]. Acta Electronica Sinica, 2009, 37(4): 780-785.
    Kuang F J ,Xu W H, and Zhang S Y. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014, 18(5): 178-184.
    Abadeh M S, Mohamadi H, and Habibi J. Design and analysis of genetic fuzzy systems for intrusion detection in computer networks[J]. Expert Systems with Applications, 2011, 38(6): 7067-7075.
    Karami A and Zapata M G. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks[J]. Neurocomputing, 2014, 149(3): 1253-1269.
    Guo S Q, Gao C, Yao J, et al. An intrusion detection model based on improved random forests algorithm[J]. Journal of Software, 2005, 16(8): 1490-1498.
  • 加载中
计量
  • 文章访问数:  1572
  • HTML全文浏览量:  154
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回