用矩形截面环单元计算轴对称场的有限元法
A FINITE ELEMENT METHOD USING RING UNIT WITH RECTANGULAR CROSS-SECTION TO NUMERICALLY ANALYZE THE AXIALLY SYMMETRIC ELECTROMAGNETIC FIELD
-
摘要: 在具有轴对称特性电磁场的数值分析中,用矩形截面环单元分析具有比其他单元更多的优点。本文推导出了该单元的拉普拉斯方程、泊松方程和波动方程的单元特征式。并运用该单元成功地分析了圆柱形电容器的场结构和加载同轴腔端部的电容值和品质因数。
-
关键词:
Abstract: In the numerical analysis of axially symmetry electromagnetic field, the finite element method using ring unit with rectangular cross -section has more advantages than other methods. The ring unit characteristic equations in relation to Laplace s, Poissou s and Helmholtz s equa.tions are derived. Using this method, the field structure of cylindrical capacitor and the capacitance and quality factor of the end of laded eoaxial cavity are successfully analyzed. -
J. Brian, F. Anibal and G. Y. Philippou, IEEE Trans. on MTT, MTT-30 (1982), 1976.[2]曾余庚,徐国华,宋国乡编著,电磁场有限单元法,科学出版社,1982年,第八章,第五章,第六章.[3]冯慈章主编,电磁场,人民教育出版社,1979年,第一章.[4]盛剑霓等编著,电磁场数值分析,科学出版社,1984年,第二章.[5]R. F. Harrington著,孟侃译,正弦电磁场,上海科学技术出版社,1964年,第二章.
计量
- 文章访问数: 2025
- HTML全文浏览量: 128
- PDF下载量: 539
- 被引次数: 0