高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯近似法下LDPC码tanh法则优化近似新方法

郑贺 胡捍英 周华莹

郑贺, 胡捍英, 周华莹. 高斯近似法下LDPC码tanh法则优化近似新方法[J]. 电子与信息学报, 2006, 28(10): 1837-1841.
引用本文: 郑贺, 胡捍英, 周华莹. 高斯近似法下LDPC码tanh法则优化近似新方法[J]. 电子与信息学报, 2006, 28(10): 1837-1841.
Zheng He, HuHan-ying, Zhou Hua-ying. New Approach to Optimal Approximation of Tanh Rule for LDPC Codes under the Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2006, 28(10): 1837-1841.
Citation: Zheng He, HuHan-ying, Zhou Hua-ying. New Approach to Optimal Approximation of Tanh Rule for LDPC Codes under the Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2006, 28(10): 1837-1841.

高斯近似法下LDPC码tanh法则优化近似新方法

New Approach to Optimal Approximation of Tanh Rule for LDPC Codes under the Gaussian Approximation

  • 摘要: 该文利用高斯近似法,提出一种基于最小均方误差(MMSE)准则的tanh法则优化近似新方法。提出反对称分布与同构广义对称分布新概念,推导出同构广义对称分布条件下若干重要结论,并给出tanh法则最优近似式的计算实现方法。加性高斯白噪声(AWGN)信道下,对一系列(3,6)规则低密度校验(LDPC)码的实验仿真显示,与传统Hagenauer近似法相比,该最优近似方法在不明显增加译码复杂度前提下,对LDPC码译码性能够带来一定改善。
  • Callager R C. Low-Density Parity-Check Codes. Cambridge,MA: MIT Press, 1963, Chapter 1.[2]Tanner R M. A recursive approach to low complexity codes.IEEE Trcms. on I匆orm. Theory, 1981, IT-27(5): 533-547.[3]Richardson T J, Shokrollahi M A, Urbanke R L. Design ofcapacity-approaching irregular low-density parity-check codes[J].IEEETrans. onlnform. Theory.2001, 47(2):619-637[4]Luby M C, Mitzenmacher M, Shokrollahi M A, Spielman D A.Efficient erasure correcting codes[J].IEEE Trans. on Inform. Theory.2001, 47(2):569-584[5]Hagenauer J, Offer E,block and convolutionalPapkecodes.L. Iterative decoding of binaryZF.F.F.7YCL12,Son InformTheory,1996, 42(2): 429-445.[6]Ha J, Kim J, McLaughlin S W Rate-compatible puncturing of low-density parity-check codes. IEEE Trans[J].on Inform. Theory.2004, 50(11):2824-2836[7]Chung S Y, Richardson T J, Urbanke R L. Analysis of sum-product decoding of low-density parity-check codes using a Caussian approximation[J].IEEE Trans. on Iorm. Theory.2001, 47(2):657-670[8]Hagenauer J. Source-controlled channel decoding[J].IEEE Trans. on6}mmun.1995, 43(9):2449-2457[9]MacKay D J C. Good error-correcting codes based on very sparse matrices[J].IEEE Trans. on I匆orm. Theory.1999, 45(2):399-431[10]Chen J, Fossorier M. Near optimum universal belief propagation based decoding of low-density parity check codes[J].IEEE Trans. on6}mmun.2002, 50(3):406-414[11]Chen J, Fossorier M. Density evolution for two improved BP-based decoding algorithms of LDPC codes[J].IEEE Commun. Levers.2002, 6(5):208-210[12]Wei L. Several properties of short LDPC codes[J].IEEE Trans. on Commun.2004, 52(5):721-727
  • 加载中
计量
  • 文章访问数:  2548
  • HTML全文浏览量:  96
  • PDF下载量:  1116
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-01-17
  • 修回日期:  2006-01-27
  • 刊出日期:  2006-10-19

目录

    /

    返回文章
    返回