基于规范正交小波的自适应均衡器
A NEW KIND OF EQUALIZER BASED ON ORTHONORMAL WAVELETS
-
摘要: 本文在分析传统均衡器性能的基础上,提出了一种基于小波分析的均衡器OWBE,用一组规范正交小波及其对应的一组系数来表示均衡器。文中给出了自适应算法,并对算法性能做了简要分析.与基于LMS算法的横向均衡器(LTE)相比,OWBE收敛速度快,而计算量增加很少,易于实时实现.
-
关键词:
- 均衡器; 小波分析; 自适应滤波
Abstract: An orthonormal wavelets based equalizer (OWBE) is presented. The equalizer is represented by a set of orthonormal wavelets and the corresponding coefficients. The paper gives the structure and also the adaption algorithm of the OWBE. Theoretical analysis show that the OWBE convergences faster than the conventional FIR LMS based equalizer (LTE), while the increase in the computational complexity is very little. Several simulations are performed to evaluate the behavior of the OWBE. -
Benedetto S, Biglieri E, Castellini V. Digital Transmission Theory. Englewood Cliffs, NJ: Prentice Hall, 1987, Chap.B.[2]Daubechies I. Orthogonal bases of compactly supported wavelets[J].Comm. Pure Appl. Math.1988, 41:909-996[3]Olivier Rioal. A discrete-time mufti-resolution theory. IEEE Trans. on SP, 1993, SP-41(8): 2591-[4]2606.[5]刘贵忠,等.小波分析及其应用.西安:西安电子科技大学出版社,1992,第二章.[6]Doroslovacki M, et al. Wavelet-based adaptive filtering. In Proc. IEEE ICASSP93, USA:1993, 488-491.[7]Erdol N. Performance of wavelet transform based adaptive filters. In Proc. IEEE ICASSP93, USA: 1993,500-503.[8]Srinath Hosur. Wavelet transform domain LMS algorithm. In Proc. IEEE ICASSP93, USA: 1993, 508-511.[9]Lee J C. Performance of transform-domain LMS adaptive digital filters. IEEE Trans on ASSP, 1986, ASSP-34(3): 499-510.[10]Yamazaki K, et al. Candidate admissible blind equalization algorithm for RAM communication systems. In Proc. ICC92, Chicago: 1992, 351.4.1-351.4.5.
计量
- 文章访问数: 1845
- HTML全文浏览量: 116
- PDF下载量: 363
- 被引次数: 0