具有紧支撑对偶的双正交插值子波系统正则度的优化设计
OPTIMAL DESIGN OF THE REGULARITY OF BIORTHOGONAL INTERPOLATING WAVELET SYSTEM WITH COMPACTLY SUPPORTED DAULS
-
摘要: 本文研究了对称内插尺度函数及其对偶的参数化表示。在此基础上,提出了一般插值子波系统的正则度优化设计方法和相应的Minimax优化算法。优化结果表明:内插尺度函数正则度的优化设计明显提高了系统的逼近能力;而对偶正则度的优化设计增加了对偶的光滑性,并且分析滤波器的通带,阻带特性也得到了显著的改善。Abstract: This paper studies the parameterized respresentations of symmetrical interpolating scaling functions and their duals.Based on this,the optimal design method and corresponding minimax algorithm of the regularity of a novel type of interplating wavelet systems,biorthogonal interpolating wavelet system with compact supported dauls are proposed.The optimal results show that the approximation power of the system to smooth signals is markedly improved. The regularity of the duals enhances,and the magnitude responses of the dual filters are optimized.
-
Dubuc S,Interpolation through an iterative scheme.J.Math.Anal.And Appl.,1986,114(1):185-204.[2]Deslauriers G,Dubuc S Symmetric iterative interpolation processes. Constructive Approximation,1989,5(1):49-68.[3]Donoho L D.Interpolating wavelet transform.Technical report, Dept. Of Statistics, Stanford Univ.,1992.10.[4]Harten A.Multiresolution representation of data:A general framework,SIAM J.Numer.Anal.,1996,33(3):1205-1256.[5]Sweldens W.The lifting scheme:A custom-design construetion of biorthogonal wavelets,Appl.Comput.Harmon.Anal.,1996,3(2):186-200.[6]Saito N,Beyllkin G.Multiresolution respresentations using the autocorrelation functions of compactly supported wavelets,IEEE Trans.On SP 1993,SP-41(12):3584-3590.[7]水鹏朗,保铮.具有紧支撑对偶的插值子波,电子科学学刊,1999,21(5):585-591[8]Daubechies I A,Lagarias J.Two-saale difference equations,I.Global regularity of solutions,SIAM J.Math.Anal.,1991,22(5):1388-1410.[9]Daubechies I A,Lagarias J.Two-scale difference equations,L Local regularity,infinte products of matrices and fractals,SIAM J.Math.Anal.,1992,23(4):1031-1079.[10]张建康,保铮,于宏毅.M-带离散小波变换中正交小波的逼近性能分析,中国科学(E辑),1997,27(6):536-541.
计量
- 文章访问数: 1840
- HTML全文浏览量: 72
- PDF下载量: 440
- 被引次数: 0