一种在对极几何约束下重建三维物体的方法
A 3-D RECONSTRUCTION METHOD BASED ON THE CONSTRAINT OF EPIPOLAR GEOMETRY
-
摘要: 本文在用对极几何关系重建三维物体的基础上,提出了利用量小二乘法和迭代法相结合的基础矩阵求解算法,推导了新的评价函数作为迭代的误差测度.在每次迭代时,以评价函数作为测度来排除具有较大误差的图象点,而对保留的误差较小的点乘以适当的权值,因此得到精度较高的基础矩阵。实验表明,我们的重建方法比已有算法运算精度更高,性能更稳定,且具有良好的抗噪声性能。
-
关键词:
- 对极几何; 基础矩阵; 三维重建
Abstract: This paper combines the least-square method and iteration method to get the fundamental matrix and develops a new evaluation function based on the epipolar geometry. During the iteration, with the evaluation function as a measurement, the points which bring larger noise are deleted, and the points with smaller noise are retained, thus the precision of our method is increased. The experimental results indicate the new method is precise in calculation, stable in performance and resistant to noise. -
吴成柯,陆心如,王林.结构光三维信息获取系统.模式识别与人工智能,1989, 2(2): 37-42.[2][2][3]徐正伟,吴成柯.基于透视投影不变性的空间平面多边形识别.电子学报,1993,21(7): 8-15.[4]Faugeras O. What can be seen in three dimensions with an uncalibrated rig? Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy: May 1992, Springer-Verlag, 563-578.[5](auan L. Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Trans. on Pattern Anal. Machine Intell., 1995, PAMI-17(1): 34-46.[6]Deriche R, Zhang Z, Luong Q T, Faugeras O. Robust recovery of the epipolar geometry for an[7]uncalibrated stereo rig. Proceedings of the and European Conference on Computer Vision, LNCS 800/801, Springer-Verlag, 1994, 567-576.[8]Hartley Richard I. Projective reconstruction and invariants from multiple images. IEEE Trans. on Pattern Anal. Machine Intell., 1994, PAMI-16(10): 1036-1041.
计量
- 文章访问数: 2202
- HTML全文浏览量: 99
- PDF下载量: 582
- 被引次数: 0