高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙特卡罗模拟电子束光刻中30、50和100keV电子束入射在层结构样品中的能量耗散剖面

孙毓平 刘华

孙毓平, 刘华. 蒙特卡罗模拟电子束光刻中30、50和100keV电子束入射在层结构样品中的能量耗散剖面[J]. 电子与信息学报, 1986, 8(3): 209-216.
引用本文: 孙毓平, 刘华. 蒙特卡罗模拟电子束光刻中30、50和100keV电子束入射在层结构样品中的能量耗散剖面[J]. 电子与信息学报, 1986, 8(3): 209-216.
Sun Yuping, Liu Hua. MONTE CARLO SIMULATION OF THE ENERGY DISSIPATION PROFILES OF 30, 50 AND 100KeV INCIDENT BEAMS IN A LAYERED STRUCTURE IN ELECTRON BEAM LITHOGRAPHY[J]. Journal of Electronics & Information Technology, 1986, 8(3): 209-216.
Citation: Sun Yuping, Liu Hua. MONTE CARLO SIMULATION OF THE ENERGY DISSIPATION PROFILES OF 30, 50 AND 100KeV INCIDENT BEAMS IN A LAYERED STRUCTURE IN ELECTRON BEAM LITHOGRAPHY[J]. Journal of Electronics & Information Technology, 1986, 8(3): 209-216.

蒙特卡罗模拟电子束光刻中30、50和100keV电子束入射在层结构样品中的能量耗散剖面

MONTE CARLO SIMULATION OF THE ENERGY DISSIPATION PROFILES OF 30, 50 AND 100KeV INCIDENT BEAMS IN A LAYERED STRUCTURE IN ELECTRON BEAM LITHOGRAPHY

  • 摘要: 本文利用蒙特卡罗模拟给出了电子束光刻中 30、50、100 keV 电子束垂直入射到厚衬底硅上的薄膜(0.4m)电子抗蚀剂聚甲基丙烯酸甲酯聚合物(PMMA)中的能量耗散剖面,模拟了理想点源和高斯圆束点源电子束情况下的膜中的径向散射和能耗,包括来自衬底的背散射,计算的电子数为三万到五万个。
      关键词:
    •  
  • 孙毓平,物理,14(1985), 748.[2]T. H. P. Chang,J.Vac. Sci. Technol., 12(1975), 1271.[3]M. Parikh, ibid., 15(1978), 931.[4]M. Hatzakis, Solid State Technol., 24(1981), 74.[5]D. F. Kyser and C. H. Ting,J.Vac. Sci. Technol., 16(1979), 1759.[6]A. Chapiro, Radiation Chemistry of Polymeric Systems, vol. 15, Wiley, New York, 1962, p. 495.[7]R. W. Nosker, J. Appl. Phys., 40(1969), 1872.[8]R. J. Hawryluk and H. i. Smith, Proc. 5th Int. Conf. on Electron and Ion Beam Science and Technology, edited by R. Bakish, Electrochemical Society, Princeton, N. J., 1972, p. 51.[9]J. S. Greeneich and T. Van Duzer, IEEE, Trans. on ED, ED-21(1974), 286.[10]M. J. Berger, Method in Computational Physics, I, Academic Press, 1963, p. 135.[11]D. F. Kyser and K. Murata, Proc. 6th Int. Conf. on Electron and Ion Beam Science and Technology, edited by R. Bakish, Electrochemical Society, Princeton, N. J., 1974, p. 205.[12]R. J. Hawryluk, et al.,J.Appl. Phys.,45(1974), 2551.[13]R. Shimizu, et al., ibid., 46(1975), 1581.[14]D. F. Kyser, J. Vac. Sci. Technol., B, 1(1983).1391.[15]D. C. Toy, Microelectronic Engineering, 1(1983), 103.[16]M. Yoshimi, et al., Proc. 14th Conf. Solid State Devices, Tokyo, 1982. see alsoJpn J. Appl.Phys., 22 (1983) Suppl. 22-1, 179.[17]L. C. Haggmark, et al., Trans. Amer. Nuc.Soc., 19(1974), 471.[18]H. E. Bishop, Proc. Phys. Soc., Jpn, 85(1965),855.[19]F. Rchrlich and B. C. Carlson, Phys. Rev., 93(1954), 38.[20]R. M. Sternheimer, ibid., 145(1966), 247.[21]S. Goudsmit and J. Saundersen, ibid., 57(1940), 24.[22]K. Murata, et al., J. Appl. Phys., 52(1981), 4396.[23]H. C. Pfeiffer, Proc. 5th Annual SEM Symp. IIT, Research Inst., (1972) p. 113.[24]A. V. Crewe, Optik, 52(1978/79), 337.[25]T. Takigawa, et al., Microelectronic Engineering, 1(1983), 121.[26]P. J. Coane et al., Proc. 10th Int. Conf. on Electron and Ion Beam Science and Technology,edited by R. Bakish, Electro chemical Society, Princeton, N. J., 1983, p. 2.[27]H. I. Ralph et al., ibid., p. 219.[28]孙毓平,电子科学学刊,7(1985), 304.
  • 加载中
计量
  • 文章访问数:  2309
  • HTML全文浏览量:  181
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  1984-09-19
  • 修回日期:  1985-12-05
  • 刊出日期:  1986-05-19

目录

    /

    返回文章
    返回