一种利用相位信息的雷达目标成像识别方法
IMAGE RECOGNITION OF RADAR TARGET USING PHASE INFORMATION
-
摘要: 高距离分辨雷达(HRR)的回波中蕴含丰富的目标信息,充分利用目标回波并采用恰当的特征抽取方法,可以有效地识别目标。本文提出一种利用相位信息和正则变换的目标识别方法。该方法基于雷达目标距离剖面像的幅度和相位矢量(幅相矢量),首先由各训练目标在不同方位姿态角时的幅相矢量构成综合矩阵并对之作正则变换建立正则子空间,然后将每类训练目标各方位姿态的幅相矢量向该子空间投影形成子像,取其平均结果作为该目标的库特征矢量。对未知目标,以其子像对库矢量的欧氏距离最小为分类准则,进行了识别模拟实验。Abstract: The echo signal of a high-range-resolution radar(HRR) contains much information about target. By using this information and feature extraction method fully and properly, an efficient target recognition can be executed. A novel approach for radar target recognition is proposed in this paper. This approach explores canonical analysis on a matrix formed by the image vectors of training targets in different aspect angles. One image vector contains both the amplitudes and relative phases of the range profile of a target. A subspace is obtained from this analysis. Projection of an image vector into this subspace forms subimage. The subimages of a training target in different aspect angles are averaged into library feature vector for this target. Using the subimage of an unknown target as feature vector and minimum distance rule for target recognition, experiments on simulated data are done.
-
Li H J, Yang S H. Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. on AP, 1993, AP-41(3): 261-265.[2]何松华,孙文峰,郭桂蓉.基于光学区雷达目标频率响应的结构成像与目标识别的研究.电子学报,1996,24(3):32-36.[3]Watanabe S, Pakvasa N. Subspace method of pattern recognition. Proc.lst. Int.Conf. on Pattern Recognition, Washington, DC: 1973, 25-32.[4]E.奥亚著,蔡国廉,扬文瑜译.子空间法模式识别.北京:科学出版社,1987,1-4.[5]Sirovich L, Kirby M. Low-dimensional procedure for the characterization of human faces[J].J. Opt.Soc. Am. A.1987, 4(3):519-524[6]Turk M A, Pentland A P. Face recognition using eigenfaces. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Lahaina, Maui, Hawaii: 1991, 586-591.[7]Krzanowski W J. Principles of Multivariate Analssis: A Users Perspective. Oxford Clarenton Press, 1988, 291-306.[8]Novak L M, Owirka G J. Radar target identification using an eigen-image approach. IEEE International Radar Conference, Atlanta, Georgia: 1994, 129-131.[9]Belhumeur P N, Hespanha J P, Kriegman D K. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,PAMI-19(7): 711-720.[10]Oja E, Parkkinen J. Texture Spaces. in Devijver P A, Kittler J eds., Pattern Recognition Theory and Application, Berlin, Heidelberg: Springer-Verlag, 1987, 21-33.[11]黄德双,韩月秋.基于位置相关的高分辨雷达目标检测方法.电子科学学刊,1997,19(5):584-590.[12]Wehner D R. High Resolution Radar. Norwood: Artech House, Inc., 1987, 77-79.[13]陈大庆,保铮.基于多层前向网络的雷达目标一维距离像识别.西安电子科技大学学报,1997,24(1):1-7. 期刊类型引用(5)
1. 何宽,郁滨. ZigBee网络按需干扰攻击检测方案. 电子测量与仪器学报. 2019(01): 128-134 . 百度学术
2. 周伟伟,郁滨. WSNs多阶段入侵检测博弈最优策略研究. 电子与信息学报. 2018(01): 63-71 . 本站查看
3. 周伟伟,郁滨. 基于不等簇半径和动态簇头的WSN能量空洞攻击抑制模型研究. 通信学报. 2017(11): 93-102 . 百度学术
4. 郁滨,黄美根,黄一才,孔志印. ZigBee网络抵御Sybil攻击的自适应链路指纹认证方案. 电子与信息学报. 2016(10): 2627-2632 . 本站查看
5. 陈长庆,魏波. 网络光纤通信中的噪声干扰去除方法研究. 计算机仿真. 2016(10): 166-169+182 . 百度学术
其他类型引用(4)
-
计量
- 文章访问数: 1842
- HTML全文浏览量: 63
- PDF下载量: 593
- 被引次数: 9