最佳小波调制
OPTIMAL WAVELET MODULATION
-
摘要: 小波分析的理论正在逐步走向通信领域,小波调制因其频谱利用率的优势而受到重视。以往研究较多的是Daubechies和Battle-Lemarie小波系列,本文从频谱利用率的角度出发,讨论如何设计用FIR滤波器实现的最佳正交小波和尺度函数,给出了设计方法和结果。通过比较我们得出这样的结论:经过最优化设计,在同样的实现复杂性条件下,小波调制的频谱利用率有了明显的提高,因而可以用较简单的FIR滤波器获得较好的频谱性能。Abstract: Wavelet analysis has being gradually applied to communications, especially, wavelet modulation receives much considerations for its bandwidth efficiency. This paper discusses how to design optimal orthogonal wavelet and scaling functions which are generated by FIR filters, from the view point of bandwidth efficiency, the designing method and results are given in details. By comparison, the bandwidth efficiency of wavelet modulation has improved significantly for the same system complexity after optimization, so relatively good spectral performance using simple FIR filters can be obtained.
-
Erdol N, Bao F, Chen Z. Wavelet Modulation: A Prototype for Digital Communication Systems.Southcon, Piscataway, USA: 1995, 168-171.[2]Daubechies I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.1988, 41(7): 909-996.[3]Mallat S. A theory of multiresolution signal decomposition: The wavelet representation[J].IEEE Trans. Patt. Anal. and Machine Intelli.1989, 11(7):674-693[4]Gandhi P P, Rao S S, Pappu R S. Wavelets for baseband coding of waveforms. Globecom, San Francisco, USA: 1994, 363-367.[5]Morris J M, Akunuri V. Minimum duration orthonormal wavelets[J].Opt. Eng.1996, 35(7):2079-2087
计量
- 文章访问数: 1870
- HTML全文浏览量: 56
- PDF下载量: 421
- 被引次数: 0