高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多子阵互耦条件下的一维波达方向估计及互耦自校正

齐崇英 王永良 张永顺 张明智

齐崇英, 王永良, 张永顺, 张明智. 多子阵互耦条件下的一维波达方向估计及互耦自校正[J]. 电子与信息学报, 2006, 28(5): 909-914.
引用本文: 齐崇英, 王永良, 张永顺, 张明智. 多子阵互耦条件下的一维波达方向估计及互耦自校正[J]. 电子与信息学报, 2006, 28(5): 909-914.
Qi Chong-ying, Wang Yong-liang, Zhang Yong-shun, Zhang Ming-zhi. One-Dimensional DOA Estimation and Self-Calibration Algorithm for Multiple Subarrays in the Presence of Mutual Coupling[J]. Journal of Electronics & Information Technology, 2006, 28(5): 909-914.
Citation: Qi Chong-ying, Wang Yong-liang, Zhang Yong-shun, Zhang Ming-zhi. One-Dimensional DOA Estimation and Self-Calibration Algorithm for Multiple Subarrays in the Presence of Mutual Coupling[J]. Journal of Electronics & Information Technology, 2006, 28(5): 909-914.

多子阵互耦条件下的一维波达方向估计及互耦自校正

One-Dimensional DOA Estimation and Self-Calibration Algorithm for Multiple Subarrays in the Presence of Mutual Coupling

  • 摘要: 该文研究多子阵(multiple subarrays)阵元互耦条件下的波达方向(DOA)估计,假设阵列由多个位置已知的均匀线阵(ULA)组成,但线阵阵元间存在互耦效应。利用均匀线阵互耦矩阵的带状、对称Toeplitz性及多子阵互耦矩阵的块状对角特性,提出了一种解耦合波达方向估计及互耦自校正算法。该算法在未知阵元互耦参数的情况下,可准确估计出信源的波达方向。另外,算法在精确估计波达方向的同时,还可准确估计出阵元间的互耦系数,实现多子阵的互耦自校正。算法的波达方向估计只需一维谱峰搜索,避免了通常多参数联合估计的多维非线性搜索及迭代运算,可明显减小算法运算量。文中讨论了算法参数可辨识性的必要条件,并分析计算了多参数联合估计的克拉美-罗界(CRB)。理论分析及蒙特卡罗仿真结果表明,该算法具有计算量小、DOA估计分辨力高、互耦校正效果好等优点。
  • Yin Q Y, Newcomb R, Zou L H. Estimation of 2-D angles of arrival via parallel linear arrays[C]. Proceedings of IEEE ICASSP, Glasgow, Scotland, 1989: 2803-2806.[2]Hua Y B, Sarkar T K, Weiner D D. An L-shaped array for estimating 2-D directions of wave arrival[J]. IEEE Trans. on AP, 1991, 39(2): 143-146.[3]Zoltowski M D, Wong K T. Closed-form eigenstructure-baseddirection finding using arbitrary but identical subarrays on asparse uniform Cartesian array grid[J].IEEE Trans. on SP.2000, 48(8):2205-2210[4]Swindlehurst A L, Stoica P, Jansson M. Exploiting arrays with multiple invariances using MUSIC and MODE[J].IEEE Trans. on SP.2001, 49(11):2511-2521[5]Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J].IEEE Trans. on SP.1994, 42(6):1519-1526[6]Yeh C, Leou M, Ucci D R. Bearing estimations with mutual coupling present[J]. IEEE Trans. on AP, 1989, 37(10): 1332-1335.[7]Dandekar K R, Ling H. Experimental study of mutual coupling compensation in smart antenna applications[J].IEEE Trans. Wireless Communication.2002, 1(3):480-487[8]Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling[C]. Proceedings of the European Signal Processing Conference, 2000: 1417-1420.[9]Inder J, James G R. An experimental study of antenna array calibration[J].IEEE Trans. on AP.2003, 51(3):664-667[10]Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling[J].IEEE Trans. on AP.1991, 39(3):273-284[11]Jaffer A G. Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration. Proceedings of IEEE Radar Conference, 2002: 294-297.[12]Hung E. A critical study of a self-calibration direction-finding method for arrays[J].IEEE Trans. on AP.1994, 42(2):471-474
  • 加载中
计量
  • 文章访问数:  2388
  • HTML全文浏览量:  119
  • PDF下载量:  779
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-12-30
  • 修回日期:  2005-05-15
  • 刊出日期:  2006-05-19

目录

    /

    返回文章
    返回