三维电磁波体积分方程的快速多极子算法
THE FAST MULTIPOLE METHOD OF THREE DIMENSIONAL ELECTROMAGNETIC WAVE VOLUME INTEGRAL EQUATION(3DV-FMM)
-
摘要: 该文提出用快速多极子方法(FMM)求解三维非均匀介质散射体的电磁散射,将以往边界方程的FMM推广到三维矢量电磁波体积分方程(3DV-FMM),推导了一级和多级快速多极子的三维体积分离散公式。这一方法减少了计算机存储要求,并从量级上降低了共轭梯度迭代求解的矩量法的计算量。在计算中,选用函数作基函数,达到相当好的收敛性.本文用3DV-FMM数值计算了三维均匀和非均匀介质立方体,多个介质体的双站散射截面(RCS),以及任一剖面上的等效电流体密度分布。计算结果与矩量法相吻合,但在计算内存和CPU时间上要节省得多。本文的方法也可为三维电磁波逆散射的反演算法研究给出正向模拟的快速计算。
-
关键词:
- 三维积分方程;快速多极子算法;数值结果
Abstract: In this paper, a Fast Multipole Method (FMM) is developed to solving the scattered fields from three dimensional (3D) inhomogeneous dielectric scatterers. This generalized FMM is applied to the volume integral equation (3DV-FMM). The discrete formula of the volume integral equation was derived by the basic FMM and multi-level FMM. The FMM approach significantly reduces both the complexity of a matrix-vector multiplying and memory requirement. In calculation, the delta function is chosen as the basis and perfect convergence to the FMM results is achieved. As a typical example, the bistatic RCS of cubic scatterers with homogeneous, or inhomogeneous permittivity is calculated numerically. Distribution of electric currents on the cross-section of a dielectric cube is also obtained. Comparing with conventional moment method, the results of 3DV-FMM are exactly matched. However, the computer memory and CPU time are greatly reduced by using the 3DV-FMM. This method is applicable to the forward numerical simulation for 3D electromagnetic inverse problem. -
Engheta N, Murphy W D, Rokhlin V, et al. The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans. on Antennas and Propagation, 1992, AP-40(6): 634-641.[2]Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine, 1993, 35(3): 7-12.[3]Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J].Microwave Opt. Technol. Lett.1995, 10(1):14-19[4]Epton M A, Dembart B. Multipole translation theory for the there-dimensional Laplace and Helmholtz equations[J].SIAM J. Sci. Comput.1995, 16(4):865-897[5]Sheng X Q, Jin J M, Song J M,et al. On the formulation of hybrid finite-element and boundaryintegral method for 3-D scattering. IEEE Trans. on Antennas and Propagation, 1998, AP-46(3):303-311.[6]Zhao J S, Chew W C, Lu C C, et al. Thin-stratified medium fast-multipole algorithm for solving microstrip structures. IEEE Trans. on Microwave and Techniques Theory, 1998, MTT-46(4):395-403.[7]Song J M, Lu C C, Chew W C, et al. Fast Illinois solver code(FISC)[J].IEEE Antennas and Propagation Magazine.1998, 40(3):27-34[8]Wang J J H, Dubberley J R. Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an interative conjugate gradient method. IEEE Trans. on Microwave and Techniques Theory, 1989, MTT-37(7): 1119-1125.[9]Song J M, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. on Antennas and Propagation, 1997, AP-45(10): 1488-1493. 期刊类型引用(3)
1. 张作宇,廖守亿,孙大为,张合新,王仕成. 稀疏差异先验信息支持的高光谱图像稀疏解混算法. 测绘学报. 2020(08): 1032-1041 . 百度学术
2. 袁博. 基于混合像元空间与谱间相关性模型的NMF线性盲解混. 测绘学报. 2019(09): 1151-1160 . 百度学术
3. 袁博. 空间与谱间相关性分析的NMF高光谱解混. 遥感学报. 2018(02): 265-276 . 百度学术
其他类型引用(4)
-
计量
- 文章访问数: 3201
- HTML全文浏览量: 144
- PDF下载量: 448
- 被引次数: 7