高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维电磁波体积分方程的快速多极子算法

陈晓光 金亚秋

陈晓光, 金亚秋. 三维电磁波体积分方程的快速多极子算法[J]. 电子与信息学报, 2000, 22(6): 1007-1015.
引用本文: 陈晓光, 金亚秋. 三维电磁波体积分方程的快速多极子算法[J]. 电子与信息学报, 2000, 22(6): 1007-1015.
Chen Xiaoguang, Jin Yaqiu . THE FAST MULTIPOLE METHOD OF THREE DIMENSIONAL ELECTROMAGNETIC WAVE VOLUME INTEGRAL EQUATION(3DV-FMM)[J]. Journal of Electronics & Information Technology, 2000, 22(6): 1007-1015.
Citation: Chen Xiaoguang, Jin Yaqiu . THE FAST MULTIPOLE METHOD OF THREE DIMENSIONAL ELECTROMAGNETIC WAVE VOLUME INTEGRAL EQUATION(3DV-FMM)[J]. Journal of Electronics & Information Technology, 2000, 22(6): 1007-1015.

三维电磁波体积分方程的快速多极子算法

THE FAST MULTIPOLE METHOD OF THREE DIMENSIONAL ELECTROMAGNETIC WAVE VOLUME INTEGRAL EQUATION(3DV-FMM)

  • 摘要: 该文提出用快速多极子方法(FMM)求解三维非均匀介质散射体的电磁散射,将以往边界方程的FMM推广到三维矢量电磁波体积分方程(3DV-FMM),推导了一级和多级快速多极子的三维体积分离散公式。这一方法减少了计算机存储要求,并从量级上降低了共轭梯度迭代求解的矩量法的计算量。在计算中,选用函数作基函数,达到相当好的收敛性.本文用3DV-FMM数值计算了三维均匀和非均匀介质立方体,多个介质体的双站散射截面(RCS),以及任一剖面上的等效电流体密度分布。计算结果与矩量法相吻合,但在计算内存和CPU时间上要节省得多。本文的方法也可为三维电磁波逆散射的反演算法研究给出正向模拟的快速计算。
  • Engheta N, Murphy W D, Rokhlin V, et al. The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans. on Antennas and Propagation, 1992, AP-40(6): 634-641.[2]Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine, 1993, 35(3): 7-12.[3]Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J].Microwave Opt. Technol. Lett.1995, 10(1):14-19[4]Epton M A, Dembart B. Multipole translation theory for the there-dimensional Laplace and Helmholtz equations[J].SIAM J. Sci. Comput.1995, 16(4):865-897[5]Sheng X Q, Jin J M, Song J M,et al. On the formulation of hybrid finite-element and boundaryintegral method for 3-D scattering. IEEE Trans. on Antennas and Propagation, 1998, AP-46(3):303-311.[6]Zhao J S, Chew W C, Lu C C, et al. Thin-stratified medium fast-multipole algorithm for solving microstrip structures. IEEE Trans. on Microwave and Techniques Theory, 1998, MTT-46(4):395-403.[7]Song J M, Lu C C, Chew W C, et al. Fast Illinois solver code(FISC)[J].IEEE Antennas and Propagation Magazine.1998, 40(3):27-34[8]Wang J J H, Dubberley J R. Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an interative conjugate gradient method. IEEE Trans. on Microwave and Techniques Theory, 1989, MTT-37(7): 1119-1125.[9]Song J M, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. on Antennas and Propagation, 1997, AP-45(10): 1488-1493.
  • 加载中
计量
  • 文章访问数:  3174
  • HTML全文浏览量:  136
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-12-31
  • 修回日期:  1999-09-23
  • 刊出日期:  2000-11-19

目录

    /

    返回文章
    返回