高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
基于辅助变量粒子滤波的空对海BO-TMA的研究
程水英, 张剑云
2007, 29(11): 2734-2737. doi: 10.3724/SP.J.1146.2006.00365  刊出日期:2007-11-19
关键词: 递推非线性滤波;扩展卡尔曼滤波;粒子滤波;辅助变量粒子滤波;只测方位目标运动分析
论文探讨了TMA(目标运动分析)中基本的非线性估计问题;介绍了粒子滤波(PF)的基本思想和辅助变量PF(AVPF)的基本算法,特别针对空对海单站只测方位TMA(BO-TMA)问题应用AVPF和EKF(扩展卡尔曼滤波)进行了对照研究;建立了问题的离散非线性滤波估计模型;设计了典型的应用场景;给出了Monte Carlo仿真运行结果;表明AVPF具有更高的估计精度、更好的收敛特性和滤波一致性。
基于多层感知卷积和通道加权的图像隐写检测
叶学义, 郭文风, 曾懋胜, 张珂绅, 赵知劲
2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537  刊出日期:2022-08-17
关键词: 隐写检测, 卷积神经网络, 多层感知卷积, 通道加权
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。