2017, 39(3): 743-748.
doi: 10.11999/JEIT160300
刊出日期:2017-03-19
微支付交易具有交易量极大且单次交易额极小的特点,使得复杂的认证协议不适用于微支付。Micali等人(2002)提出的基于概率选择微支付方案,把微支付聚合成宏支付,大幅提高了微支付的效率。Liu-Yan在(2013)提出了保证所有参与者的数据融入概率选择结果的生成, 而且使得所有参与者可以验证结果的公平性。然而,Liu-Yan方案中银行可能获得额外利益,从而破坏了协议的公平性。该文首先分析了Liu-Yan方案的安全威胁,并且以1个用户-1个商家的模型代替Liu-Yan方案中大量用户-1个商家的模型,以数据承诺技术为基础保障结果的公平性与可验证性。
2008, 30(5): 1109-1112.
doi: 10.3724/SP.J.1146.2006.01760
刊出日期:2008-05-19
为快速生成高质量混淆网络,该文提出一种最大后验弧主导的快速生成算法。它只需遍历一遍Lattice,具有线性时间复杂度。采用K-L散度(Kullback-Leibler Divergence,KLD)来度量弧标号之间的发音相似性,改善了混淆网络生成中弧对齐的准确性。实验结果显示,所提算法在生成速度上和Xue的快速算法是可比的,而生成质量更好。通过采用KLD作为弧标号相似性测度,生成混淆网络的质量得到了进一步提高。